原文:Pick定理、欧拉公式和圆的反演

Pick定理 欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为 innod ,边界整点数 ednod , S innod frac ednod 证明 把每个整点近似地看成一个圆,那么多边形内部的整点所代表的圆全部被算入 多边形边界上的圆被算了一半 顶点上被算了 sum 半圆 外角 ,外角和 度,于是 应用 POJ 求格点三角形内部点数 欧拉公式 内容 ...

2019-01-08 22:44 0 965 推荐指数:

查看详情

函数|(扩展)定理|反演

也许更好的阅读体验 函数 定义 函数是 小于等于 x的数中与x 互质 的数的 数目 符号\(\varphi(x)\) 互质 两个互质的数的最大公因数等于1,1与任何数互质 通式 \(\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i ...

Sat Jun 29 23:52:00 CST 2019 7 1446
数论之定理

本文介绍[初等]数论、群的基本概念,并引入几条重要定理,最后籍着这些知识简单明了地论证了函数和定理。 数论是纯粹数学的分支之一,主要研究整数的性质。 算术基本定理(用反证法易得):又称唯一分解定理,表述为 任何大于1的自然数,都可以唯一分解成有限个质数的乘积,公式:\(n=p_1 ...

Mon Oct 21 18:55:00 CST 2019 0 364
定理及其证明

定理及其证明[补档] 一.定理 背景:首先你要知道什么是定理以及函数。 下面给出定理,对于互质的a,p来说,有如下一条定理 \[a^{\phi(p)}\equiv1(mod\;p) \] 这就是定理 二.剩余系 定义:对于集合\(\{k*m+a|k ...

Sun Jan 19 01:38:00 CST 2020 1 1067
扩展定理

扩展定理 \[a^b\equiv \begin{cases} &a^{b\%\varphi(p)} &\gcd(a,p)=1\\ &a^b &\gcd(a,p)\neq1,b<\phi(p)\\ &a^{b\%\varphi(p ...

Tue Mar 06 03:59:00 CST 2018 0 1184
定理及其证明

我真的很逊,所以有错也说不定。 这篇很简,所以看不懂也说不定。 总觉得小满哥讲过这个证明,虽然身为老年健忘选手我大概是不记得什么了。。 定理:\(a^{\varphi(n)} \equiv 1 \ (mod \ n)\) ,其中 \((a,n) = 1\) 费马小定理:\(a^{p-1 ...

Wed Jul 17 16:53:00 CST 2019 0 746
初探莫比乌斯反演反演

  莫比乌斯反演是数论中非常重要的一部分,它可以将一个本来只能用时间复杂度极高的枚举求和过程,通过反演变成一个线性时间复杂度甚至根号级别的时间复杂度的问题。在这里,总结一下本人在学习莫比乌斯反演(附带一部分反演)时的经验和技巧。   在说反演之前先说一个大多数反演问题都能用到的部分——整除 ...

Sat Aug 25 17:21:00 CST 2018 0 923
定理概述

定理 【前言】 定理挺好玩的。但是一般就用来优化模算术下的乘方运算,没啥意思。不过它的性质比较有意思,在很多模算术带乘方的玩意里有奇效。更何况函数其本身就比较神奇。 前置技能:容斥,数论基础,同余基础。 【函数】 函数\(\varphi(n)\)表示\(1\sim n ...

Sat Oct 26 02:26:00 CST 2019 0 565
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM