决策树算是比较常见的数据挖掘算法了,最近也想写点算法的东西,就先写个决策树吧。 一. 什么是决策树 决策树是什么,我们来“决策树”这个词进行分词,那么就会是决策/树。大家不妨思考一下,重点是决策还是树呢?其实啊,决策树的关键点在树上。 我们平时写代码的那一串一串的If Else其实就是决策树 ...
前情提要: 通俗地说决策树算法 一 基础概念介绍 一. 概述 上一节,我们介绍了决策树的一些基本概念,包括树的基本知识以及信息熵的相关内容,那么这次,我们就通过一个例子,来具体展示决策树的工作原理,以及信息熵在其中承担的角色。 有一点得先说一下,决策树在优化过程中,有 个经典的算法,分别是ID ,C . ,和CART。后面的算法都是基于前面算法的一些不足进行改进的,我们这次就先讲ID 算法,后面会 ...
2019-07-29 18:01 1 3940 推荐指数:
决策树算是比较常见的数据挖掘算法了,最近也想写点算法的东西,就先写个决策树吧。 一. 什么是决策树 决策树是什么,我们来“决策树”这个词进行分词,那么就会是决策/树。大家不妨思考一下,重点是决策还是树呢?其实啊,决策树的关键点在树上。 我们平时写代码的那一串一串的If Else其实就是决策树 ...
前情提要 通俗地说决策树算法(一)基础概念介绍 通俗地说决策树算法(二)实例解析 上面两篇介绍了那么多决策树的知识,现在也是时候来实践一下了。Python有一个著名的机器学习框架,叫sklearn。我们可以用sklearn来运行前面说到的赖床的例子。不过在这之前,我们需要介绍一下 ...
转自:https://www.jianshu.com/p/f66696c98e07 结合例子解释算法原理和过程,觉得容易理解,转来做个记录 1.决策树 决策树模型demo 随机森林模型demo 1.1从LR到决策树 相信大家都做过用LR来进行分类,总结一下 ...
1. 决策树算法 1.1 背景知识 信息量\(I(X)\):指一个样本/事件所蕴含的信息,如果一个事情的概率越大,那么就认为该事件所蕴含的信息越少,确定事件不携带任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用来描述系统信息量 ...
算法思想 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。 其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。 使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出 ...
利用ID3算法来判断某天是否适合打网球。 (1)类别属性信息熵的计算由于未分区前,训练数据集中共有14个实例, 其中有9个实例属于yes类(适合打网球的),5个实例属于no类(不适合打网球), 因此分区前类别属性的熵为: (2)非类别属性信息熵 ...
###决策树基础概念 在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy (熵) 表示的是系统的凌乱程度,它是决策树的决策依据,熵的概念来源于香侬的信息论。 ###决策树的决策过程 选择分裂特征:根据某一指标(信息增益,信息增益比或基尼 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、简介 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 1.定义: 决策树是一种树形结构,其中每个内部节点表示一个 ...