原文:K-匿名算法研究

月的最后几天,研究了下k匿名算法,在这里总结下。 提出背景 Internet 技术 大容量存储技术的迅猛发 展以及数据共享范围的逐步扩大,数据的自动采集 和发布越来越频繁,信息共享较以前来得更为容易 和方便 但另一方面,以信息共享与数据挖掘为目的的数据发布过程中隐私泄露问题也日益突出,因此如何在实现信息共享的同时,有效地保护私有敏感信息不被泄漏就显得尤为重要。数据发布者在发布数据前需要对数据集进 ...

2018-12-28 14:51 0 5825 推荐指数:

查看详情

k-匿名算法

的把这些知识展现出来。这次介绍一个在隐私保护领域常用的模型,K-匿名。 背景 随着大数据分析技术的迅猛发展 ...

Sun Dec 01 02:33:00 CST 2019 0 760
K-近邻算法

。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征 ...

Tue Feb 21 01:07:00 CST 2017 0 1812
k-近邻算法

系列文章:《机器学习实战》学习笔记 本章介绍了《机器学习实战》这本书中的第一个机器学习算法k-近邻算法,它非常有效而且易于掌握。首先,我们将探讨k-近邻算法的基本理论,以及如何使用距离测量的方法分类物品;其次我们将使用Python从文本文件中导入并解析数据;再次,本文讨论了当存在许多数据来源时 ...

Wed Jun 17 07:13:00 CST 2015 3 12363
K-近邻算法(KNN)

K-近邻算法 K-K个 N-nearest-最近 N-Neighbor 来源:KNN算法最早是由Cover和Hart提出的一种分类算法 定义 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 距离公式 ...

Wed Nov 13 19:42:00 CST 2019 0 279
K-均值聚类算法

K-均值聚类算法 聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中。K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成。 K-均值算法 算法思想 K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心点 ...

Sat Aug 08 18:51:00 CST 2015 0 3286
K-均值聚类算法

一.k均值聚类算法 对于样本集。"k均值"算法就是针对聚类划分最小化平方误差: 其中是簇Ci的均值向量。从上述公式中可以看出,该公式刻画了簇内样本围绕簇均值向量的紧密程度,E值越小簇内样本的相似度越高。 工作流程: k-均值算法的描述如下: 接下 ...

Wed Jun 06 03:08:00 CST 2018 0 6839
K-近邻算法(KNN)

keyword     文本分类算法、简单的机器学习算法、基本要素、距离度量、类别判定、k取值、改进策略 摘要     kNN算法是著名的模式识别统计学方法,是最好的文本分类算法之一,在机器学习分类算法中占有相当大的地位 ...

Tue Oct 09 04:20:00 CST 2018 0 4011
K-近邻算法(KNN)

KNN算法是采用测量不同特征向量之间的距离的方法进行分类。 工作原理:存在一个数据集,数据集中的每个数据都有对应的标签,当输入一个新的没有标签的数据时,KNN算法找到与新数据特征量最相似的分类标签。 KNN算法步骤: (1)选择邻近的数量k和距离度量方法; (2)找到待分类样本的k个最近 ...

Wed Apr 18 16:46:00 CST 2018 0 1319
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM