引入的随机性更大,难以达到收敛,极少数情况下可能会效果变好。 谈谈深度学习中的 Ba ...
Batch size参数的作用:决定了下降的方向 极端一: batch size为全数据集 Full Batch Learning : 好处: .由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。 .由于不同权重的梯度值差别巨大,因此选择一个全局的学习率很困难。Full Batch Learning可以使用Rprop只基于梯度符号并且针对性单独更新各权值。 坏处: .随着 ...
2018-12-28 11:42 0 2911 推荐指数:
引入的随机性更大,难以达到收敛,极少数情况下可能会效果变好。 谈谈深度学习中的 Ba ...
看mnist数据集上其他人的CNN模型时了解到了Batch Normalization 这种操作。效果还不错,至少对于训练速度提升了很多。 batch normalization的做法是把数据转换为0均值和单位方差 这里分五部分简单解释一下Batch Normalization ...
一个高尔夫球手练习高尔夫球时会花绝大多数时间练习基本的挥杆动作。在基本的挥杆动作的基础上,逐渐的才会练习其他动作。相似的,目前为止我们一直专注在理解BP算法, 它是我们的基础”挥杆”动作,学习神经网络的基础。这章中我会解释一些用来提升BP算法的技术,以提高神经网络的学习。 本章介绍的技术包括 ...
原文:https://blog.csdn.net/qq_18668137/article/details/80883350 此处谨作学习记录之用。 深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。 第一种,遍历全部数据集算一次损失函数,然后计算函数对各个参数 ...
转自:https://blog.csdn.net/qq_18668137/article/details/80883350 深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要 ...
在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差。而在深层神经网络的训练中,当中间神经层的前一层参数发生改变时,该层的输入分布也会发生改变,也就是存在内部协变量偏移问题(Internal ...
1、Batch Normalization的引入 在机器学习领域有个很重要的假设:IID独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障。在深度学习网络中,后一层的输入是受前一层的影响的,而为了方便训练网络 ...
问题导入 在机器学习领域中,常见的一类工作是使用带标签数据训练神经网络实现分类、回归或其他目的,这种训练模型学习规律的方法一般称之为监督学习。在监督学习中,训练数据所对应的标签质量对于学习效果至关重要。如果学习时使用的标签数据都是错误的,那么不可能训练出有效的预测模型。同时,深度学习 ...