概要 MSRA在目标检测方向Beyond Regular Grid的方向上越走越远,又一篇大作推出,相比前作DCN v1在COCO上直接涨了超过5个点,简直不要太疯狂。文章的主要内容可大致归纳如下: More dconv and Modulated donv:认为前作中卷积变形时容易采样 ...
论文源址:https: arxiv.org abs . 摘要 可变形卷积的一个亮点是对于不同几何变化的物体具有适应性。但也存在一些问题,虽然相比传统的卷积网络,其神经网络的空间形状更接近于目标物体的形状,但有时会超出ROI区域,从而引入不相关的图像信息进而对提取的特征造成影响。为此,本文提出了改造后的可变形卷积,通过增加建模及更强的训练来改善其聚焦图像相关区域的能力。通过在网路中引入更多的可变形 ...
2018-12-29 17:51 0 937 推荐指数:
概要 MSRA在目标检测方向Beyond Regular Grid的方向上越走越远,又一篇大作推出,相比前作DCN v1在COCO上直接涨了超过5个点,简直不要太疯狂。文章的主要内容可大致归纳如下: More dconv and Modulated donv:认为前作中卷积变形时容易采样 ...
论文地址:http://arxiv.org/abs/1811.11168 作者:pprp 时间:2019年5月11日 0. 摘要 DCNv1引入了可变形卷积,能更好的适应目标的几何变换。但是v1可视化结果显示其感受野对应位置超出了目标范围,导致特征不受图像内容影响(理想情况是所有的对应位置 ...
Non-local neural networks(CVPR2018) 传统的卷积神经网络的感受野相对较小,比如3*3、5*5,但对于注意力机制而言,需要更大的感受野来获取全局的注意力得分,Nonlocal的目的就是计算全局感受野的注意力。Nonlocal的计算由相似度计算函数 f 和映射函数 ...
论文源址:https://arxiv.org/abs/1811.12030 开源代码:未公开 摘要 本文提出了目标检测网络Grid R-CNN,其基于网格定位机制实现准确的目标检测。传统方法主要基于回归操作,Grid R-CNN则捕捉详细的空间信息,同时具有全卷积结构 ...
https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformable的卷积如何实现的一步上,在写这篇博客之前,我也查阅了很多其他人的分享或者去github找代码 ...
论文链接:https://arxiv.org/abs/1802.02611 tensorflow 官方实现: https: //github.com/tensorflow/models/tree/master/research/deeplab 实验代码:https ...
结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN ...
论文原址:https://arxiv.org/abs/1808.08718 代码:https://github.com/JiahuiYu/wdsr_ntire2018 摘要 本文证明在SISR中在ReLU之前特征图越宽,在有效的计算资源及内存条件下,模型的性能越好 ...