原文:简单解释Momentum,RMSprop,Adam优化算法

我们初学的算法一般都是从SGD入门的,参数更新是: 它的梯度路线为: 但是可以看出它的上下波动很大,收敛的速度很慢。因此根据这些原因,有人提出了Momentum优化算法,这个是基于SGD的,简单理解,就是为了防止波动,取前几次波动的平均值当做这次的W。这个就用到理论的计算梯度的指数加权平均数,引进超参数beta 一般取 . : beta和 beta分别代表之前的dW权重和现在的权重。 效果图如下 ...

2018-12-27 13:47 0 638 推荐指数:

查看详情

SGD的优化:SGD+Momentum、Nesterov Momentum、AdaGrad、 RMSPropAdam

1. SGD的不足: ①呈“之”字型,迂回前进,损失函数值在一些维度的改变得快(更新速度快),在一些维度改变得慢(速度慢)- 在高维空间更加普遍 ②容易陷入局部极小值和鞍点: 局部最小值: 鞍点: ③对于凸优化而言,SGD不会收敛,只会在最优 ...

Wed Feb 05 09:28:00 CST 2020 0 2579
机器学习中几种优化算法的比较(SGD、MomentumRMSPropAdam

有关各种优化算法的详细算法流程和公式可以参考【这篇blog】,讲解比较清晰,这里说一下自己对他们之间关系的理解。 BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速度慢,一个 epoch 只能更新一次模型参数。 SGD 就是用来解决这个问题的,以每个样本 ...

Sun Mar 31 06:19:00 CST 2019 0 1065
神经网络优化算法:梯度下降法、MomentumRMSpropAdam

最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识。关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结。吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费): https ...

Mon Sep 24 20:26:00 CST 2018 2 17336
优化算法:AdaGrad | RMSProp | AdaDelta | Adam

0 - 引入   简单的梯度下降等优化算法存在一个问题:目标函数自变量的每一个元素在相同时间步都使用同一个学习率来迭代,如果存在如下图的情况(不同自变量的梯度值有较大差别时候),存在如下问题: 选择较小的学习率会使得梯度较大的自变量迭代过慢 选择较大的学习率会使得梯度较小的自变量迭代 ...

Sun Apr 28 01:46:00 CST 2019 0 548
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM