狄利克雷卷积 定义:如果函数 \(F,f,g\) 满足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 则 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷积,记作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...
狄利克雷卷积 amp 莫比乌斯反演总结 Prepare P 表示当 P 为真时 P 为 ,否则为 。 a b 指 b 被 a 整除。 一些奇怪常见的函数: n id n n sigma n n的约数和 d n n的约数个数 epsilon n n 狄利克雷卷积 数论函数 数论函数指一类定义域是正整数,值域是一个数集的函数。 加法:逐项相加就可以辣 f g x f x g x 数乘:用一个常数乘 x ...
2018-12-26 15:41 5 1607 推荐指数:
狄利克雷卷积 定义:如果函数 \(F,f,g\) 满足: \(F(n)=\sum\limits_{d|n}f(d)g(\frac{n}{d})\) 则 \(F\) 是 \(f\) 和 \(g\) 的狄利克雷卷积,记作 \(F=(f∗g)\),或 \(F(n)=(f∗g)(n ...
狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh。 卷积: “(n)”表示到n的一个范围。 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算\(f\ast g\)定义为 \[(f\ast g)(n) = \sum_ ...
定义出莫比乌斯函数的人似乎对容斥原理有了高深的造诣。这里从狄利克雷卷积(\(Dirichlet\)卷积 ...
听起来很 nb,很有名但比较难学的一个算法类型。然而确实很 nb。 我竟然在学 ymx 一年半前就学过的东西。 1. 反演的本质与第一反演公式 1.1. 什么是反演 反演是通过用 \(f\) 表示 \(g\) 的方法求出如何用 \(g\) 表示 \(f\)。 如果我们已知 \(g(n ...
数论入门1 一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\)。 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数。 性质 ...
数论函数 陪域:包含值域的任意集合 数论函数:定义域为正整数,陪域为复数的函数 积性函数:对于函数$f(n)$,若存在任意互质的数$a,b$,使得$a*b=n$,并且$f(n)=f(a)*f(b ...
Definition 完全积性函数 单位函数 \[\varepsilon(n)=[n=1] \] 幂函数 \[Id_k(n)=n^k \] 特别地,有: \(k=0 ...
先放上板题 BZOJ3944 洛谷P4213 嗯,杜教筛解决的就是这样一个丧心病狂的前缀和 \(O(N)\)都会T。。 积性函数## 如果一个数论函数\(f(n)\),满足若\(m,n\)互 ...