原文地址:https://www.jiqizhixin.com/articles/2017-10-1-1 生成对抗网络基本概念 要理解生成对抗模型(GAN),首先要了解生成对抗模型可以拆分为两个模块:一个是判别模型,另一个是生成模型。简单来说就是:两个人比赛,看是 A 的矛厉害,还是 B 的盾 ...
转自机器之心整理的,来自Goodfellow 在 NIPS 的演讲和台大李弘毅的解释,完成原 GAN 的推导 证明与实现。 本文主要分四部分,第一部分描述 GAN 的直观概念,第二部分描述概念与优化的形式化表达,第三部分将对 GAN 进行详细的理论推导与分析,最后我们将实现前面的理论分析。 原文地址:https: baijiahao.baidu.com s id amp wfr spider am ...
2018-12-25 09:44 0 809 推荐指数:
原文地址:https://www.jiqizhixin.com/articles/2017-10-1-1 生成对抗网络基本概念 要理解生成对抗模型(GAN),首先要了解生成对抗模型可以拆分为两个模块:一个是判别模型,另一个是生成模型。简单来说就是:两个人比赛,看是 A 的矛厉害,还是 B 的盾 ...
把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘。 GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zhihu.com/p/27295635 Generative ...
Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做出来。我最近刚入门 GAN,看了些资料,做一些笔记。 可以参考另一篇,GAN原理 ...
转自:https://blog.csdn.net/ch18328071580/article/details/96690016 概述 1、什么是GAN? 生成对抗网络简称GAN,是由两个网络组成的,一个生成器网络和一个判别器网络。这两个网络可以是神经网络(从卷积神经网络、循环神经网络到自编 ...
常见的GAN网络的相关原理及推导 在上一篇中我们给大家介绍了GAN的相关原理和推导,GAN是VAE的后一半,再加上一个鉴别网络。这样而导致了完全不同的训练方式。 GAN,生成对抗网络,主要有两部分构成:生成器,判别器。 生成器网络的主要工作是负责生成样本数据,输入的是高斯白噪声z ...
3.优化目标 4.优化过程 5.工程实现 6.对齐次方程,利用S ...
GAN 生成式对抗网络 借助于 sklearn.datasets.make_moons 库,生成双半月形的数据,同时把数据点画出来。 可以看出,数据散点呈现两个半月形状。 一个简单的 GAN 生成器和判别器的结构都非常简单,具体如下: 生成器: 32 ==> ...
GAN,生成式对抗网络(Generative Adversarial Networks)是一种深度学习模型,是近几年来复杂分布上无监督学习最具前景的方法之一。 机器学习的模型可大体分为两类,生成模型(Generative model)和判别模型(Discriminator model),判别模型 ...