原文:论文阅读笔记三十八:Deformable Convolutional Networks(ECCV2017)

论文源址:https: arxiv.org abs . 开源项目:https: github.com msracver Deformable ConvNets 摘要 卷积神经网络由于其构建时固定的网络结构,因此只能处理模型的几何变换问题。本文主要介绍了两种增强CNN模型变换的模型,称为可变形卷积及可变形RoI pooling。二者都基于一种思路,通过额外增加模型的偏移及根据目标任务对此偏移量进行 ...

2018-12-25 16:24 0 2620 推荐指数:

查看详情

目标检测论文阅读Deformable Convolutional Networks

https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformable的卷积如何实现的一步上,在写这篇博客之前,我也查阅了很多其他人的分享或者去github找代码 ...

Fri Jan 18 19:15:00 CST 2019 0 706
pytorch实现 | Deformable Convolutional Networks | CVPR | 2017

文章转载自微信公众号:【机器学习炼丹术】,请支持原创。 这一篇文章,来讲解一下可变卷积的代码实现逻辑和可视化效果。全部基于python,没有C++。大部分代码来自:https://github.co ...

Sun Dec 20 19:55:00 CST 2020 0 571
论文讨论&&思考《Deformable Convolutional Networks

  这篇论文真是让我又爱又恨,可以说是我看过的最认真也是最多次的几篇paper之一了,首先deformable conv的思想我觉得非常好,通过end-to-end的思想来做这件事也是极其的make sense的,但是一直觉得哪里有问题,之前说不上来,最近想通了几点,先初步说几句,等把他们的代码跑 ...

Sat May 20 08:13:00 CST 2017 0 9854
论文阅读-(CVPR 2017) Kernel Pooling for Convolutional Neural Networks

在这篇论文中,作者提出了一种更加通用的池化框架,以核函数的形式捕捉特征之间的高阶信息。同时也证明了使用无参数化的紧致清晰特征映射,以指定阶形式逼近核函数,例如高斯核函数。本文提出的核函数池化可以和CNN网络联合优化。 Network Structure Overview Kernel ...

Sun Dec 23 04:32:00 CST 2018 0 639
Deformable Convolutional Networks

1 空洞卷积 1.1 理解空洞卷积 在图像分割领域,图像输入到CNN(典型的网络比如FCN)中,FCN先像传统的CNN那样对图像做卷积再pooling,降低图像尺寸的同时增大感受野,但是由于图像分 ...

Sun Dec 01 07:46:00 CST 2019 0 454
《Learning Convolutional Neural Networks for Graphs》论文阅读

首先,容我吐槽一下这篇论文的行文结构、图文匹配程度、真把我搞得晕头转向,好些点全靠我猜测推理作者想干嘛,😈 背景 我们知道传统的CNN针对的是image,是欧氏空间square grid,那么使用同样square grid的卷积核就能对输入的图片进行特征的提取。在上一篇论文中,使用的理论 ...

Mon Apr 20 09:28:00 CST 2020 0 1532
《Diffusion-Convolutional Neural Networks论文阅读

DCNN 主要思想: 这是一篇基于空间域的图神经网络,聚合方式通过采样(hop)1~k 阶的邻居并同 self 使用 mean 的方式得到新的 feature-vector 作者将不同的 ...

Sat Jun 20 07:12:00 CST 2020 0 1023
Densely Connected Convolutional Networks 论文阅读

毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤 Densely Connected Convolutional Networks 其实很早就出来了,cvpr 2017 best paper 觉得读论文前,还是把dense net的整个 ...

Wed Jan 10 19:45:00 CST 2018 0 999
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM