原文:论文阅读-(CVPR 2017) Kernel Pooling for Convolutional Neural Networks

在这篇论文中,作者提出了一种更加通用的池化框架,以核函数的形式捕捉特征之间的高阶信息。同时也证明了使用无参数化的紧致清晰特征映射,以指定阶形式逼近核函数,例如高斯核函数。本文提出的核函数池化可以和CNN网络联合优化。 Network Structure Overview Kernel Pooling Method The illustration of the tensor product A s ...

2018-12-22 20:32 0 639 推荐指数:

查看详情

《Learning Convolutional Neural Networks for Graphs》论文阅读

首先,容我吐槽一下这篇论文的行文结构、图文匹配程度、真把我搞得晕头转向,好些点全靠我猜测推理作者想干嘛,😈 背景 我们知道传统的CNN针对的是image,是欧氏空间square grid,那么使用同样square grid的卷积核就能对输入的图片进行特征的提取。在上一篇论文中,使用的理论 ...

Mon Apr 20 09:28:00 CST 2020 0 1532
《Diffusion-Convolutional Neural Networks论文阅读

DCNN 主要思想: 这是一篇基于空间域的图神经网络,聚合方式通过采样(hop)1~k 阶的邻居并同 self 使用 mean 的方式得到新的 feature-vector 作者将不同的 ...

Sat Jun 20 07:12:00 CST 2020 0 1023
论文笔记《Notes on convolutional neural networks

这是个06年的老文章了,但是很多地方还是值得看一看的. 一、概要 主要讲了CNN的Feedforward Pass和 Backpropagation Pass,关键是卷积层和polling层 ...

Wed Jul 06 20:48:00 CST 2016 0 2501
pytorch实现 | Deformable Convolutional Networks | CVPR | 2017

文章转载自微信公众号:【机器学习炼丹术】,请支持原创。 这一篇文章,来讲解一下可变卷积的代码实现逻辑和可视化效果。全部基于python,没有C++。大部分代码来自:https://github.co ...

Sun Dec 20 19:55:00 CST 2020 0 571
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM