损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常 ...
着重介绍hige loss 和 softmax loss。 svm回顾 C ,C 是要区分的两个类别,通过分类函数执行时得到的值与阈值的大小关系来决定类别归属,例如: g x g w Tx b 我们取阈值为 ,此时 f x sgn g x 就是最终的判别函数。对于同一个问题,有多个分类函数,哪一个更好呢 于是引入了 分类间隔 的指标 函数间隔和几何间隔 给定样本 x i, y i ,函数间隔为: ...
2018-12-22 12:42 0 642 推荐指数:
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常 ...
参考链接:http://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc 1. 平方损失函数:MSE- L2 Loss $$MSE = \sum_{i = 1}^n (y_i - \hat{y_i ...
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常 ...
一、定义 损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。 经典机器学习算法,他们最本质的区别是分类思想(预测f(x)的表达式)不同,有的是 ...
0. 前言 1. 损失函数 2. Margin 3. Cross-Entropy vs. Squared Error 总结 参考资料 0. 前言 “尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题 ...
###基础概念 损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,换句话,可以解释为我们构建模型得到的预测值与真实值之间的差距。它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心 ...
信息熵 信息熵也被称为熵,用来表示所有信息量的期望。 公式如下: 例如在一个三分类问题中,猫狗马的概率如下: label 猫 狗 马 ...
损失函数是机器学习中常用于优化模型的目标函数,无论是在分类问题,还是回归问题,都是通过损失函数最小化来求得我们的学习模型的。损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数是指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常 ...