原文:利用奇异值分解(SVD)进行图像压缩-python实现

首先要声明,图片的算法有很多,如JPEG算法,SVD对图片的压缩可能并不是最佳选择,这里主要说明SVD可以降维 相对于PAC 主成分分析 ,SVD 奇异值分解 对数据的列和行都进行了降维,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。一张二维n m的灰度图片可以看做是n m的矩阵,利用SVD可以实现对二维图像的压缩 按照灰度图片进行压缩: 按 ...

2018-12-21 19:06 0 602 推荐指数:

查看详情

奇异值分解SVD)和简单图像压缩

SVD(Singular Value Decomposition,奇异值分解) 算法优缺点: 优点:简化数据,去除噪声,提高算法结果 缺点:数据的转换可能难于理解 适用数据类型:数值型数据 算法思想: 很多情 ...

Fri Dec 12 08:06:00 CST 2014 0 4923
python——矩阵的奇异值分解,对图像进行SVD

矩阵SVD   奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做是对方阵在任意矩阵上的推广。Singular的意思是突出的,奇特的,非凡的,按照这样的翻译似乎也可以叫做矩阵的优分解。   假设矩阵A是一个m*n阶的实矩阵,则存在一个分解 ...

Wed Apr 24 04:58:00 CST 2019 0 2502
SVD奇异值分解Python实现

注:在《SVD奇异值分解)小结 》中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数。但是这里会利用SVD的原理,如果大家还不明白它的原理,可以去看看《SVD奇异值分解)小结 ...

Mon Dec 03 23:02:00 CST 2018 16 15005
奇异值分解SVD

0 - 特征分解(EVD) 奇异值分解之前需要用到特征分解,回顾一下特征分解。 假设$A_{m \times m}$是一个是对称矩阵($A=A^T$),则可以被分解为如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...

Sun Oct 20 22:57:00 CST 2019 0 404
奇异值分解SVD

奇异值分解   特征分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵。  奇异值分解基本定理:若 $ A$ 为 $ m \times n$ 实矩阵, 则 $ A$ 的奇异值分解存在   $A=U \Sigma V^{T ...

Sun Oct 03 00:35:00 CST 2021 1 150
奇异值分解(SVD)

奇异值分解(SVD) 特征与特征向量 对于一个实对称矩阵\(A\in R^{n\times n}\),如果存在\(x\in R^n\)和\(\lambda \in R\)满足: \[\begin{align} Ax=\lambda x \end{align} \] 则我们说 ...

Mon Nov 08 17:47:00 CST 2021 0 122
奇异值分解SVD

文档链接:http://files.cnblogs.com/files/bincoding/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3.zip 强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布 ...

Wed May 24 00:01:00 CST 2017 0 1718
降维之奇异值分解(SVD)

看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地向读者解释清楚这个矩阵分解方法。然而这个“通俗易懂”到我这就变成了“似懂非懂”,这些漂亮的图可把 ...

Fri May 03 05:57:00 CST 2019 0 2125
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM