转载自http://blog.csdn.net/u012759136/article/details/52232266 原文作者github地址 概述 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步 ...
关于Tensorflow读取数据,官网给出了三种方法: 供给数据 Feeding : 在TensorFlow程序运行的每一步, 让Python代码来供给数据。 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据 仅适用于数据量比较小的情况 。 对于数据量较小而言,可能一般选择直接将数据加载进内存 ...
2018-12-20 12:05 0 1876 推荐指数:
转载自http://blog.csdn.net/u012759136/article/details/52232266 原文作者github地址 概述 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步 ...
首先是生成tfrecords格式的数据,具体代码如下: 然后读取生成的tfrecords数据,并且将tfrecords里面的数据保存成jpg格式的图片。具体代码如下: ...
上一篇我写了如何给自己的图像集制作tfrecords文件,现在我们就来讲讲如何读取已经创建好的文件,我们使用的是Tensorflow中的Dataset来读取我们的tfrecords,网上很多帖子应该是很久之前的了,绝大多数的做法是,先将tfrecords序列化成一个队列,然后使用 ...
1、知识点 2、代码 ...
在使用slim之类的tensorflow自带框架的时候一般默认的数据格式就是TFRecords,在训练的时候使用TFRecords中数据的流程如下:使用input pipeline读取tfrecords文件/其他支持的格式,然后随机乱序,生成文件序列,读取并解码数据,输入模型训练。 如果有一串 ...
利用TFRecords存储与读取带标签的图片 觉得有用的话,欢迎一起讨论相互学习~ TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件 TFRecords文件包含了tf.train.Example 协议 ...
本程序 (1)mnist的图片转换成TFrecords格式 (2) 读取TFrecords格式 ...
当训练数据量较小时,采用直接读取文件的方式,当训练数据量非常大时,直接读取文件的方式太耗内存,这时应采用高效的读取方法,读取tfrecords文件,这其实是一种二进制文件。tensorflow为其内置了各种存储和读取的函数,方便调用。 不知道为啥,从tfrecords中读取数据用于训练时 ...