前向传播 通过输入样本x及参数\(w^{[1]}\)、\(b^{[1]}\)到隐藏层,求得\(z^{[1]}\),进而求得\(a^{[1]}\); 再将参数\(w^{[2]}\)、\(b^{[2]}\)和\(a^{[1]}\)一起输入输出层求得\(z^{[2]}\),进而求得 ...
在深度学习中,前向传播与反向传播是很重要的概念,因此我们需要对前向传播与反向传播有更加深刻的理解,假设这里有一个三层的神经网络 在这里,上面一排表示的是前向传播,后面一排表示的是反向传播,在前向传播的情况每一层将通过一层激活函数去线性化,并且在前向传播的过程中会缓存z l ,最终输出y 计算出损失函数的导数作为反向传播的输出, 超参数的理解 在上述神经网络中,参数为W ,b ,W ,b ,W ,b ...
2018-12-18 17:07 0 841 推荐指数:
前向传播 通过输入样本x及参数\(w^{[1]}\)、\(b^{[1]}\)到隐藏层,求得\(z^{[1]}\),进而求得\(a^{[1]}\); 再将参数\(w^{[2]}\)、\(b^{[2]}\)和\(a^{[1]}\)一起输入输出层求得\(z^{[2]}\),进而求得 ...
简述 深度前馈网络(deep feedforward network), 又叫前馈神经网络(feedforward neural network)和多层感知机(multilayer perceptron, MLP) . 深度前馈网络之所以被称为网络(network),因为它们通常由许多 ...
理解反向传播 要理解反向传播,先来看看正向传播。下面是一个神经网络的一般结构图: 其中,\(x\) 表示输入样本,\(\bm{w}\) 表示未知参数(图中未标出偏置 \(b\)), \(S\) 表示激活函数,\(y\) 表示预测值,\(\hat{y}\) 表示真实值。 显然,通过从样本 \(x ...
1、反向传播 简单的理解,反向传播的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。 链式求导十分冗余,因为很多路径被重复访问了,对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。 同样是利用链式法则,BP算法则机智地避开了这种冗余 ...
直观理解反向传播 反向传播算法是用来求那个复杂到爆的梯度的。 上一集中提到一点,13000维的梯度向量是难以想象的。换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感。 如上图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍。 我们来考虑一个还没有 ...
这篇文章主要整理三部分内容,一是常见的三种神经网络结构:前馈神经网络、反馈神经网络和图网络;二是整理前馈神经网络中正向传播、误差反向传播和梯度下降的原理;三是梯度消失和梯度爆炸问题的原因及解决思路。 一、神经网络结构 目前比较常用的神经网络结构有如下三种: 1、前馈神经网络 前馈神经网络中 ...
的可能性越大,反之是“1”类的可能性大。 1.1 前向传播的计算 为了便于理解后续的内容,我们需要先 ...
前向传播和反向传播( Forward and backward propagation) 前向传播 假设输入${a^{[l - 1]}}$,输出${a^{[l]}}$,缓存${z^{[l]}}$,从实现的角度来说缓存${w^{[l]}}$,${b^{[l]}}$更容易在不同的环节调用函数 ...