原文链接:http://www.one2know.cn/keras5/ CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 输出: RNN ...
输入模式与网络架构间的对应关系: 向量数据:密集连接网络 Dense层 图像数据:二维卷积神经网络 声音数据 比如波形 :一维卷积神经网络 首选 或循环神经网络 文本数据:一维卷积神经网络 首选 或循环神经网络 时间序列数据:循环神经网络 首选 或一维卷积神经网络 其他类型的序列数据:循环神经网络或一维卷积神经网络。如果数据顺序非常重要 比如时间序列,但文本不是 ,那么首选循环神经网络 视频数据: ...
2018-12-15 16:21 0 684 推荐指数:
原文链接:http://www.one2know.cn/keras5/ CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 输出: RNN ...
结果: ...
从mnist下载手写数字图片数据集,图片为28*28,将每个像素的颜色(0到255)改为(0倒1),将标签y变为10个长度,若为1,则在1处为1,剩下的都标为0。 接下来搭建CNN 卷积->池化->卷积->池化 使图片从(1,28,28)-> ...
Keras深度学习之卷积神经网络(CNN) 一、总结 一句话总结: 卷积就是特征提取,后面可接全连接层来分析这些特征 二、Keras深度学习之卷积神经网络(CNN) 转自或参考:Keras深度学习之卷积神经网络(CNN)https://www.cnblogs.com ...
当我们说卷积神经网络(CNN)时,通常是指用于图像分类的2维CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN。在本指南中,我们将介绍1D和3D CNN及其在现实世界中的应用。我假设你已经大体上熟悉卷积网络的概念。 2维CNN | Conv2D ...
卷积神经网络的结构我随意设了一个。 结构大概是下面这个样子: 代码如下: 最终在测试集上识别率在99%左右。 相关测试数据可以在这里下载到。 ...
Keras–基于python的深度学习框架 Keras是一个高层神经网络API,Keras由纯Python编写而成并基于Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras ...