Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的 ...
论文: Multi Fidelity Automatic Hyper Parameter Tuning via Transfer Series Expansion 我们都知道实现AutoML的基本思路是不断选取不同的超参数组成一个网络结构,然后使用这个网络结构在整个数据集上进行评估 假设评估值为 f H X mathcal L ,D train ,D valid ,X表示某一组超参数 ,最后选择 ...
2018-12-15 12:08 0 662 推荐指数:
Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的 ...
论文题目:《Domain Adaptation via Transfer Component Analysis》 论文作者:Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok and Qiang Yang 论文链接:https ...
1. 文章内容概述 本人精读了事件抽取领域的经典论文《Event Extraction via Dynamic Multi-Pooling Convolutional Neural Network》,并作出我的读书报告。这篇论文由中科院自动化所赵军、刘康等人发表于ACL2015会议,提出 ...
Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun 本文的出发点是做Instance-aware Semantic ...
I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察 ...
Text Style Transfer主要是指Non-Parallel Data条件下的,具体的paper list见: https://github.com/fuzhenxin/Style-Transfer-in-Text Delete, Retrieve, Generate ...
原论文:Auto-FPN: Automatic Network Architecture Adaptation for Object Detection Beyond Classification 之前的AutoML都是应用在图像分类或者语言模型上,AutoFPN成功地将这技术应用到 ...
1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法。在机器学习领域,标准的算法理论是一次学习一个任务,也就是系统的输出为实数的情况。复杂的学习问题先被分解成理论上独立的子问题,然后分别对每个子问题 ...