项目使用了预训练的bert模型进行文本分类 先说一下总体思路: 1.从官方的ckpt模型文件中加载模型,接一层全连接和激活函数,再接一层输出层即可,根据分类的类别选择输出层节点的个数。 2.构造模型后,冻结bert层,只训练后续接的分类层,保存模型,这一步可以不保存优化器状态,因为当前优化器 ...
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值。而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了。这就是PyTorch简洁高效所在。所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推 ...
2018-12-10 15:19 0 3616 推荐指数:
项目使用了预训练的bert模型进行文本分类 先说一下总体思路: 1.从官方的ckpt模型文件中加载模型,接一层全连接和激活函数,再接一层输出层即可,根据分类的类别选择输出层节点的个数。 2.构造模型后,冻结bert层,只训练后续接的分类层,保存模型,这一步可以不保存优化器状态,因为当前优化器 ...
首先明确预训练好的模型和自己的网络结构是有差异的,预训练模型的参数如何跟自己的网络匹配的呢: 参考官网教程:http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html --If we provide ...
1. Tensorflow模型文件 (1)checkpoint 该文件是文本文件,里面记录了保存的最新的checkpoint文件以及其他checkpoint文件列表。在测试的时候,可以通过修改这个文件,指定具体使用哪个模型 (2)meta文件 这个文件保存的是计算图结构,可以理解为神经网络 ...
参考 model.state_dict()中保存了{参数名:参数值}的字典 保存模型 torch.save(model.state_dict(), PATH) # 保存模型为pth 导入模型 ...
这是一篇需要仔细思考的博客; 预训练模型 tensorflow 在 1.0 之后移除了 models 模块,这个模块实现了很多模型,并提供了部分预训练模型的权重; 图像识别模型的权重下载地址 https://github.com/tensorflow/models/tree ...
转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练,也就是简单的从保存的模型中加载参数权重 ...
1.加载预训练模型: 只加载模型,不加载预训练参数:resnet18 = models.resnet18(pretrained=False) print resnet18 打印模型结构 resnet18.load_state_dict(torch.load ...
保存模型: 加载模型: 这样会出现一个问题,即明明指定了某张卡,但总有一个模型的显存多出来,占到另一张卡上,很烦人,看到知乎有个方法可以解决 https://www.zhihu.com/question/67209417/answer/355059967 说是 ...