看了很多反卷积和转置卷积的文章,似乎还是一头雾水,记录下自己理解的过程~ 有人一句话总结:逆卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算。其实还是不是很理解。 反卷积(转置卷积)通常用来两个方面: 1. CNN可视化,通过反卷积将卷积得到的feature map还原到像素空间 ...
参考:打开链接 卷积: 就是这个图啦,其中蓝色部分是输入的feature map,然后有 的卷积核在上面以步长为 的速度滑动,可以看到周围还加里一圈padding,用更标准化的参数方式来描述这个过程: 二维的离散卷积 N 方形的特征输入 i i i 方形的卷积核尺寸 k k k 每个维度相同的步长 s s s 每个维度相同的padding p p p i , k , s , p , 输出特征尺寸o ...
2018-12-09 23:23 0 3457 推荐指数:
看了很多反卷积和转置卷积的文章,似乎还是一头雾水,记录下自己理解的过程~ 有人一句话总结:逆卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算。其实还是不是很理解。 反卷积(转置卷积)通常用来两个方面: 1. CNN可视化,通过反卷积将卷积得到的feature map还原到像素空间 ...
1. 深度可分离卷积(depthwise separable convolution) 在可分离卷积(separable convolution)中,通常将卷积操作拆分成多个步骤。而在神经网络中通常使用的就是深度可分离卷积(depthwise separable convolution ...
一、图像卷积类型 在2维图像卷积计算中,大致分为full、same和valid这三类。 1、valid卷积操作 图1 valid卷积操作 valid卷积的图像大小计算公式为:滑动步长为S,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图 ...
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里。 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同。 记号 ...
1.图像卷积 图2 同样地,卷积的时候需要对卷积核进行180的旋转,同时卷积核中心与需计算的图像像素对齐,输出结构为中心对齐像素的一个新的像素值,计算例子如下 图3 这样计算出左上角(即第一行第一列)像素的卷积后像素值。 给出 ...
Convolution arithmetic tutorial theano Convolution arithmetric github 如何理解深度学习中的deconvolution networks? CNN 中千奇百怪的卷积方式 如何理解空洞卷积(dilated ...
卷积(多---->1 的映射) 本质:在对输入做9--->1的映射关系时,保持了输出相对于input中的位置性关系 对核矩阵做以下变形:卷积核的滑动步骤变成了卷积核矩阵的扩增 卷积的矩阵乘法变成以下形式:核矩阵重排,输入featuremap变形为向量 反卷积 ...
参考:https://blog.csdn.net/fu6543210/article/details/80407911 https://blog.csdn.net/fu6543210/article/details/80408704 什么是反卷积 反卷积的数学含义,通过反卷积可以将通过卷积 ...