1.使用apply() 举例说明: Encoder :设计的编码其模型 weights_init(): 用来初始化模型 model.apply():实现初始化 返回: 2.直接在定义网络时定义 然后调用即可 ...
本文目录 . xavier初始化 . kaiming初始化 . 实际使用中看到的初始化 . ResNeXt,densenet中初始化 . wide residual networks中初始化 MSRinit 转载请注明出处: http: www.cnblogs.com darkknightzh p .html 参考网址: http: pytorch.org docs . . nn.html hi ...
2018-12-08 17:11 0 10286 推荐指数:
1.使用apply() 举例说明: Encoder :设计的编码其模型 weights_init(): 用来初始化模型 model.apply():实现初始化 返回: 2.直接在定义网络时定义 然后调用即可 ...
神经网络中最重要的就是参数了,其中包括权重项$W$和偏置项$b$。 我们训练神经网络的最终目的就是得到最好的参数,使得目标函数取得最小值。参数的初始化也同样重要,因此微调受到很多人的重视, 只列一些常用的! Tensorflow 常数初始化 value取0,则代表 ...
利用pytorch 定义自己的网络模型时,需要继承toch.nn.Module 基类。 基类中有parameters()、modules()、children()等方法 看一下parameters方法 看一下modules()方法 看一下 ...
模型参数的访问初始化和共享 参数访问 参数访问:通过下述两个方法.这两个方法是在nn.Module类中实现的.继承自该类的子类也有相同方法. .parameters() .named_parameters() 输出 可见返回的名字自动加上了层数的索引作为前缀 ...
一、模型保存/加载 1.1 所有模型参数 训练过程中,有时候会由于各种原因停止训练,这时候我们训练过程中就需要注意将每一轮epoch的模型保存(一般保存最好模型与当前轮模型)。一般使用pytorch里面推荐的保存方法。该方法保存的是模型的参数。 对应的加载模型方法为(这种方法 ...
使用了一段时间PyTorch,感觉爱不释手(0-0),听说现在已经有C++接口。在应用过程中不可避免需要使用Finetune/参数初始化/模型加载等。 模型保存/加载 1.所有模型参数 训练过程中,有时候会由于各种原因停止训练,这时候我们训练过程中就需要注意将每一轮epoch的模型保存 ...
1、均匀分布初始化 torch.nn.init.uniform_(tensor, a=0, b=1) 从均匀分布U(a, b)中采样,初始化张量。 参数: tensor - 需要填充的张量 a - 均匀分布的下界 b - 均匀分布 ...
1. 均匀分布 从均匀分布U(a, b)中采样,初始化张量。 参数: tensor - 需要填充的张量 a - 均匀分布的下界 b - 均匀分布的上界 代码示例: 均匀分布详解: 若 x 服从均匀分布,即 x~U(a,b),其概率密度函数(表征随机变量每个取值 ...