原文:机器学习笔记(六)神经网络引入及多分类问题实践

一 神经网络引入 我们将从计算机视觉直观的问题入手,提出引入非线性分类器的必要性。首先,我们希望计算机能够识别图片中的车。显然,这个问题对于计算机来说是很困难的,因为它只能看到像素点的数值。 应用机器学习,我们需要做的就是提供大量带标签的图片作为训练集,有的图片是一辆车,有的图片不是一辆车,最终我们希望我们给出一张图片,计算机可以准确地告诉我们这是不是一辆车。 显然这需要一个非线性分类模型。相对于 ...

2018-12-07 14:55 0 1375 推荐指数:

查看详情

神经网络——多分类问题

多输出神经网络如图 输出层有多个神经元 这时,h(x)是一个向量。 当运用在图像识别领域时 如果输出是 \[{h_\Theta }\left( x \right) = \left[ {\begin{array}{*{20}{c}}1\\0\\0\end{array ...

Tue Oct 30 00:53:00 CST 2018 0 1442
吴恩达机器学习笔记五_多元分类神经网络

为什么要使用神经网络笔记三中,曾提到非线性拟合的问题。当时是通过构造特征向量,即由两个或以上的变量构造一个新的变量,增加\(\theta\)的维度,以拟合出更细腻的曲线。下面是课件中类似的例子: 可以看到,随着变量即数据集的维度增加,这种做法将会导致“维度灾难”,越来越不可行。就上 ...

Mon Oct 29 04:42:00 CST 2018 0 957
TensorFlow.NET机器学习入门【4】采用神经网络处理分类问题

上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类问题。 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三个类别:偏瘦、正常、偏胖。 处理流程如下: 1、收集数据 2、构建神经网络 3、训练 ...

Mon Dec 27 19:36:00 CST 2021 0 1539
机器学习学习笔记(二):神经网络

在解决一些简单的分类问题时,线性回归与逻辑回归就足以应付,但面对更加复杂的问题时(例如对图片中车的类型进行识别),运用之前的线性模型可能就得不到理想的结果,而且由于更大的数据量,之前方法的计算量也会变得异常庞大。因此我们需要学习一个非线性系统:神经网络。 我在学习 ...

Thu Mar 05 18:48:00 CST 2015 0 2086
机器学习笔记(五)神经网络参数的拟合

Cost function(代价函数) 1、参数表示: m 个训练样本:{(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))} 神经网络的层数:L l 层的神经元数量(不计入偏置单元):Sl 2、两种分类问题: (1)Binary ...

Sat Oct 19 05:01:00 CST 2019 0 415
迷人的神经网络——机器学习笔记1

目录 迷人的神经网络——机器学习笔记1 第1章 神经元模型及网络结构 1.1 神经元模型 1.1.1 单输入神经元 1.1.2 激活函数 1.1.3 多输入神经元 1.2 网络 ...

Tue May 21 15:08:00 CST 2019 0 610
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM