原文:SVD(奇异值分解)Python实现

注:在 SVD 奇异值分解 小结 中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数。但是这里会利用到SVD的原理,如果大家还不明白它的原理,可以去看看 SVD 奇异值分解 小结 ,或者自行百度 google。数据集:https: pan.baidu.com s ZmpUSIscy Vl ...

2018-12-03 15:02 16 15005 推荐指数:

查看详情

奇异值分解SVD

0 - 特征分解(EVD) 奇异值分解之前需要用到特征分解,回顾一下特征分解。 假设$A_{m \times m}$是一个是对称矩阵($A=A^T$),则可以被分解为如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...

Sun Oct 20 22:57:00 CST 2019 0 404
奇异值分解SVD

奇异值分解   特征分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵。  奇异值分解基本定理:若 $ A$ 为 $ m \times n$ 实矩阵, 则 $ A$ 的奇异值分解存在   $A=U \Sigma V^{T ...

Sun Oct 03 00:35:00 CST 2021 1 150
奇异值分解(SVD)

奇异值分解(SVD) 特征与特征向量 对于一个实对称矩阵\(A\in R^{n\times n}\),如果存在\(x\in R^n\)和\(\lambda \in R\)满足: \[\begin{align} Ax=\lambda x \end{align} \] 则我们说 ...

Mon Nov 08 17:47:00 CST 2021 0 122
奇异值分解SVD

文档链接:http://files.cnblogs.com/files/bincoding/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3.zip 强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布 ...

Wed May 24 00:01:00 CST 2017 0 1718
python——矩阵的奇异值分解,对图像进行SVD

矩阵SVD   奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做是对方阵在任意矩阵上的推广。Singular的意思是突出的,奇特的,非凡的,按照这样的翻译似乎也可以叫做矩阵的优分解。   假设矩阵A是一个m*n阶的实矩阵,则存在一个分解 ...

Wed Apr 24 04:58:00 CST 2019 0 2502
降维之奇异值分解(SVD)

看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地向读者解释清楚这个矩阵分解方法。然而这个“通俗易懂”到我这就变成了“似懂非懂”,这些漂亮的图可把 ...

Fri May 03 05:57:00 CST 2019 0 2125
矩阵奇异值分解(SVD)及其应用

前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征分解实现的,一种是用奇异值分解实现的。在上篇文章中便是基于特征分解的一种解释。特征奇异在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲 ...

Thu Sep 13 04:09:00 CST 2018 2 4026
奇异值分解(SVD)原理及应用

一、奇异与特征基础知识: 特征分解奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征分解奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征分解吧: 1)特征: 如果说一个向量v ...

Sat Oct 06 05:14:00 CST 2018 0 4057
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM