原文:dropout含义与原理

含义 在训练过程中,对神经网络单元按照一定比例暂时将其丢弃。 原理 由于网络参数过多,训练数据少,或者训练次数过多,会产生过拟合的现象。dropout产生的一个重大原因就是为了避免过拟合。 每一层的神经元按照不同的概率进行dropout,这样每次训练的网络都不一样,对每一个的batch就相当于训练了一个网络,dropout本质是一种模型融合的方式,当dropout设置为 . 时,模型总类最多为 n ...

2018-12-01 15:37 0 660 推荐指数:

查看详情

Dropout原理解析

1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在 ...

Mon Dec 17 04:15:00 CST 2018 0 3035
Dropout原理与实现

  Dropout是深度学习中的一种防止过拟合手段,在面试中也经常会被问到,因此有必要搞懂其原理。 1 Dropout的运作方式   在神经网络的训练过程中,对于一次迭代中的某一层神经网络,先随机选择中的一些神经元并将其临时隐藏(丢弃),然后再进行本次训练和优化。在下一次迭代中,继续随机隐藏 ...

Tue Oct 08 20:11:00 CST 2019 0 2121
DropOut

1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较 ...

Fri Sep 28 03:17:00 CST 2018 0 2348
Dropout

From 《白话深度学习与TensorFlow》 Dropout 顾名思义是“丢弃”,在一轮训练阶段丢弃一部分网络节点,比如可以在其中的某些层上临时关闭一些节点,让他们既不输入也不输出,这样相当于网络的结构发生了改变。而在下一轮训练过程中再选择性地临时关闭一些节点,原则上都是 ...

Mon Oct 22 20:34:00 CST 2018 0 988
Dropout

参数正则化方法 - Dropout 受人类繁衍后代时男女各一半基因进行组合产生下一代的启发,论文(Dropout: A Simple Way to Prevent Neural Networks from Overfitting)提出了DropoutDropout是一种在深度学习环境中应用 ...

Tue Oct 31 06:28:00 CST 2017 2 18556
深度学习中Dropout原理解析

1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高 ...

Mon Apr 08 18:59:00 CST 2019 0 1091
dropout

全连接层加dropout层防止模型过拟合,提升模型泛化能力 卷积网络中参数较少,加入dropout作用甚微。然而,较低层的中加入dropout是仍然有帮助,因为它为较高的全连接层提供了噪声输入,从而防止它们过拟合。 一般对于参数较多的模型,效果更好 做法 1、其实Dropout很容易实现 ...

Sat Mar 27 17:38:00 CST 2021 0 353
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM