可逆矩阵 矩阵 $A$ 为 $n$ 阶方阵,若存在 $n$ 阶矩阵 $B$ ,使得矩阵 $A、B$ 的乘积为单位阵,则称 $A$ 为可逆阵,$B$ 为 $A$ 的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。 定义 设 ...
最近在捡回之前的线性代数知识,在复习可逆矩阵的时候,发现有的书上把可逆矩阵又称为非奇异矩阵,乍一看名字完全不知所云,仔细一分析,还是不明白。要想弄明白,还是得从英文入手,下面的解释主要从这里得来的Why are invertible matrices called non singular 。 先把原回答搬过来: If you take an n n matrix at random you ha ...
2018-11-28 21:04 2 7393 推荐指数:
可逆矩阵 矩阵 $A$ 为 $n$ 阶方阵,若存在 $n$ 阶矩阵 $B$ ,使得矩阵 $A、B$ 的乘积为单位阵,则称 $A$ 为可逆阵,$B$ 为 $A$ 的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。 定义 设 ...
奇异矩阵和非奇异矩阵都是针对方阵而言的。 奇异矩阵:就是对应的行列式等于 $0$ 的矩阵。 非奇异矩阵:行列式不为 $0$ 的矩阵,或者说是满秩矩阵。 奇异这个词针对的是矩阵行列式为 $0$,那为什么行列式为 $0$ 就奇异或特殊了呢?行列式为 $1,2,3,4,...$ 就不是奇异了吗 ...
A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个 ...
最近在看关于可视化方向的内容,有一个名词是nonsingular matrices,在中文中的含义是非奇异矩阵,对于非奇异这个名词我是一直没有理解了的。这次发现,从对应的英文单词nonsingular上来讲,singular有一个含义是单数的,那么nonsingular是非单数,与非奇异矩阵的性质 ...
著名的科学杂志《Nature》于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果。该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-negative Matrix Factorization,NMF)算法,即NMF是在矩阵中所有元素均为非 ...
Link: 1. 可逆矩阵 0x1:可逆矩阵的基本概念 对于数域K上的矩 ...
可逆矩阵 矩阵 $A$ 为 $n$ 阶方阵,若存在 $n$ 阶矩阵 $B$,使得矩阵 $A、B$ 的乘积为单位阵,则称 $A$ 为可逆阵,$B$ 为 $A$ 的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。 定义 设 $P$ 是数域, $A \in P ...
前言 可逆矩阵与伴随矩阵在线性代数中密不可分。在题目中也是一大难点。因此写下这篇文章记录刷题时遇到的重要知识点。 规定 1. 此文章中A矩阵默认为n阶可逆方阵; 2. 或 :为A矩阵的行列式,本文更侧重使用符合国内教材的后者; 3. :为A矩阵的伴随矩阵; 4. :为A矩阵的逆 ...