原文:GAN生成式对抗网络(二)——tensorflow代码示例

代码实现 当初学习时,主要学习的这个博客 https: xyang .github.io GAN ,写的挺好的。 本文目的,用GAN实现最简单的例子,帮助认识GAN算法。 . 真实数据集,我们要通过GAN学习这个数据集,然后生成和他分布规则一样的数据集 .封装GAN对象 包含生成器,判别器 .生成器netG 随意输入的z,通过z w b的矩阵运算 全连接运算 ,返回结果 .判别器nefD 判别器为 ...

2018-11-26 14:45 0 1415 推荐指数:

查看详情

说说GAN生成式对抗网络

在Auto-encoder中,input data通过一个encoder神经网络得到一个维度的较低的向量,称这个向量为code,code经过一个decoder神经网络后输出一个output data。 encoder 网络的作用是用来发现给定数据的压缩表示。decoder网络使原始输入的尽可 ...

Sat Jun 03 23:32:00 CST 2017 0 1483
不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保存训练过程中采样器的采样图片,在 train.py 中输入如下代码: 输入完成后 ...

Fri Jan 27 02:33:00 CST 2017 22 16846
不要怂,就是GAN (生成式对抗网络) (一): GAN 简介

前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现。 自从 Ian Goodfellow 在 14 年发表了 论文 Generative Adversarial Nets ...

Tue Jan 03 01:38:00 CST 2017 3 84743
GAN和CGAN——生成式对抗网络和条件生成式对抗网络

GAN的定义   GAN是一个评估和学习生成模型的框架。生成模型的目标是学习到输入样本的分布,用来生成样本。GAN和传统的生成模型不同,使用两个内置模型以“对抗”的方式来使学习分布不断接近输入样本分布。两个模型一个是生成模型(Generative model),用来生成样本;另一个是判别模型 ...

Tue Aug 04 06:44:00 CST 2020 0 1319
GAN生成式对抗网络(三)——mnist数据生成

通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 GAN对象结构 生成器函数 对随机值z(维度为1,100),进行包装,伪造,产生伪造数据。 包装过程概括为:全连接->reshape->反卷积 包装过程中使用了batch_normalization ...

Tue Nov 27 01:07:00 CST 2018 0 1129
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM