原文:样本不均衡下的分类损失函数

通常二分类使用交叉熵损失函数,但是在样本不均衡下,训练时损失函数会偏向样本多的一方,造成训练时损失函数很小,但是对样本较小的类别识别精度不高。 解决办法之一就是给较少的类别加权,形成加权交叉熵 Weighted cross entropy loss 。今天看到两个方法将权值作为类别样本数量的函数,其中有一个很有意思就录在这里。 http: cn.arxiv.org pdf . v 上边说明的时, ...

2018-11-26 10:54 0 3674 推荐指数:

查看详情

缓解多分类样本不均衡问题

利用深度学习做多分类在工业或是在科研环境中都是常见的任务。在科研环境,无论是NLP、CV或是TTS系列任务,数据都是丰富且干净的。而在现实的工业环境中,数据问题常常成为困扰从业者的一大难题;常见的数据问题包含有: 数据样本量少 数据缺乏标注 数据不干净,存在大量的扰动 数据 ...

Wed Dec 23 00:17:00 CST 2020 0 1647
关于样本不均衡问题

原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131 在分类中如何处理训练集中不平衡问题   在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目。即类别 ...

Mon Oct 11 09:18:00 CST 2021 0 150
样本不均衡问题

  one-stage的检测精度比不上two-stage,一个主要原因是训练过程样本不均衡造成。样本不均衡主要包括两方面,一是正负样本不均衡;二是难易样本不均衡。目前主要的解决方法包括OHEM,S-OHEM,Focal Loss,A-fast-RCNN,GHM(梯度均衡化)。 1. ...

Sun Nov 15 00:20:00 CST 2020 0 1818
文本分类(七):从理论到实践解决文本分类中的样本不均衡问题

摘要:本篇主要从理论到实践解决文本分类中的样本不均衡问题。首先讲了什么是样本不均衡现象以及可能带来的问题;然后重点从数据层面和模型层面讲解样本不均衡问题的解决策略。数据层面主要通过欠采样和过采样的方式来人为调节正负样本比例,模型层面主要是通过加权Loss,包括基于类别Loss、Focal ...

Mon Sep 06 23:44:00 CST 2021 0 246
处理样本不均衡数据

处理样本不均衡数据一般可以有以下方法: 1、人为将样本变为均衡数据。 上采样:重复采样样本量少的部分,以数据量多的一方的样本数量为标准,把样本数量较少的类的样本数量生成和样本数量多的一方相同。 采样:减少采样样本量多的部分,以数据量少的一方的样本数量为标准。 2、调节模型参数 ...

Tue Jan 08 05:52:00 CST 2019 1 1557
数据抽样及样本不均衡处理

一、数据抽样 抽样的组织形式有: (1)简单随机抽样:按等概率原则直接从总体中抽取样本。该方法适用于个体分布均匀的场景。 (2)分层抽样:先对总体分组,再从每组中随机抽样。该方法适用于带有分类逻辑属性的数据。 (3)等距抽样:先将总体中的每个个体按顺序编号,计算抽样间隔,然后按照固定间隔 ...

Wed Apr 18 16:44:00 CST 2018 0 884
样本不均衡对模型的影响

在做项目的时候,发现在训练集中,正负样本比例比例在1:7左右,虽然相差不多(但在实际获取的样本比例大概在1:2000左右),所以有必要探讨一样本不均衡的情况,这些训练数据会对模型产生的影响。 在实际的模型选取中,采用了SVM和textCNN这两种模型对文本进行分类,下面分别看一这两种 ...

Sun Mar 10 18:59:00 CST 2019 1 3822
如何解决样本不均衡问题

解决样本不均衡的问题很多,主流的几个如下: 1.样本的过采样和欠采样。 2..使用多个分类器进行分类。 3.将二分类问题转换成其他问题。 4.改变正负类别样本在模型中的权重。 一、样本的过采样和欠采样。 1.过采样:将稀有类别的样本进行复制,通过增加此稀有类样本的数量来平衡 ...

Wed Apr 04 04:58:00 CST 2018 0 6712
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM