转自:http://www.cnblogs.com/luweimy/p/4121789.html 预备知识 矩阵乘法 介绍略,去网上查吧 两角和(差)公式 推导 旋转变换一般是按照某个圆心点,以一定半径 r 旋转一定的角度α,为了简单起见我们给出下面的情景 假定点A(x,y)想 ...
转自:http://www.cnblogs.com/luweimy/p/4121789.html 预备知识 矩阵乘法 介绍略,去网上查吧 两角和(差)公式 推导 旋转变换一般是按照某个圆心点,以一定半径 r 旋转一定的角度α,为了简单起见我们给出下面的情景 假定点A(x,y)想 ...
1.黑白图像不是二维数据。图像的维度,实际上是图像中特征向量的数量。用向量数据化图像,想象按行扫描,遇到的每一个像素都是向量的一个元素,像素个数就是向量维数;例如二维图像矩阵表示为:256*256=65536,维数还是很高的。一个100x100像素的图像其灰度图产生的特征向量是10000维度 ...
一、基础矩阵 F 如果已知基础矩阵F,以及一个3D点在一个像面上的像素坐标p,则可以求得在另一个像面上的像素坐标p‘。这个是基础矩阵的作用,可以表征两个相机的相对位置及相机内参数。 下面具体介绍基础矩阵与像素坐标p和p’的关系 ...
3D数学 ---- 矩阵和线性变换 一般来说,方阵能描述任意线性变换。线性变换保留了直线和平行线,但原点没有移动。线性变换保留直线的同时,其他的几何性质如长度、角度、面积和体 积可能被变换改变了。从非技术意义上说,线性变换可能“拉伸”坐标系,但不会“弯曲”或“卷折 ...
利用pandas模块 ...
1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 ...
mask_all = np.zeros((256, 256), dtype='uint8') 单通道 mask_all_enlarge = np.zeros((256, 256, 3), dtype='uint8' 三通道 #为三通道图像赋值,这里我用的是循环,因该还有更简单的方式 ...