本文主要参考资料 最小错误率是在统计的意义上说的,请注意其含义。 在这里要弄清楚条件概率这个概念。P(*|#)是条件概率的通用符号,在“|”后边出现的#为条件,之前的*为某个事件,即在某条件#下出现某个事件*的概率。P(ωK|X)是表示在X出现条件下,样本为ωK类的概率。 一个事物 ...
CIFAR 和CIFAR 均是带有标签的数据集,都出自于规模更大的一个数据集,他有八千万张小图片。而本次实验采用CIFAR 数据集,该数据集共有 张彩色图像,这些图像是 ,分为 个类,每类 张图。这里面有 张用于训练,构成了 个训练批,每一批 张图 另外 用于测试,单独构成一批。测试批的数据里,取自 类中的每一类,每一类随机取 张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定 ...
2018-11-19 17:44 0 1077 推荐指数:
本文主要参考资料 最小错误率是在统计的意义上说的,请注意其含义。 在这里要弄清楚条件概率这个概念。P(*|#)是条件概率的通用符号,在“|”后边出现的#为条件,之前的*为某个事件,即在某条件#下出现某个事件*的概率。P(ωK|X)是表示在X出现条件下,样本为ωK类的概率。 一个事物 ...
理论上的东西,就不写了,也写不出什么有价值的东西,资料太多了。后文很多关于原理的讲述都给出了其他文章的引用。 分享一个比较简单易懂的贝叶斯决策理论与统计判别方法。 数据集: Dataset1.txt 328 个同学的身高、体重、性别数据(78 个女生、250 个男生 ...
1.基于最小错误率的贝叶斯决策 共w1~wn种决策 本质上就是最大后验概率P(wi | X)的贝叶斯决策 公式一:P(wi | X) = P(X | wi)*P(wi) / ∑nj=1 P(X | wj)*P(wj) i=1...n,j=1...n 2.最小风险的贝 ...
pytorch的图像分类实践 在学习pytorch的过程中我找到了关于图像分类的很浅显的一个教程上一次做的是pytorch的手写数字图片识别是灰度图片,这次是彩色图片的分类,觉得对于像我这样的刚刚开始入门pytorch的小白来说很有意义,今天写篇关于这个图像分类的博客. 收获的知识 ...
基于Kaggle的图像分类(CIFAR-10) Image Classification (CIFAR-10) on Kaggle 一直在使用Gluon’s data package数据包直接获得张量格式的图像数据集。然而,在实际应用中,图像数据集往往以图像文件的形式存在。将从原始图像 ...
CIFAR-10.(Canadian Institute for Advanced Research)是由 Alex Krizhevsky、Vinod Nair 与 Geoffrey Hinton 收集的一个用于图像识别的数据集,60000个32*32的彩色图像,50000个training ...
基于CNN的CIFAR10图像分类 完整代码如下: cifar10教程补充内容 更优选的网络,类似VGG 这个网络比前面那个准确率更高一些. 显示图片及标签 显示一些训练集中的照片: 显示预测结果和实际结果: ...
参考:https://jingyan.baidu.com/article/656db9183296c7e381249cf4.html 1、使用读取方式pickle def unpickle(fil ...