原文:泰坦尼克号获救问题

...

2018-11-22 18:44 1 1433 推荐指数:

查看详情

泰坦尼克号沉没之谜,用数据还原真相——Titanic获救率分析(用pyecharts)

泰坦尼克号获救率数据分析报告,用数据揭露真相。 一,船上乘客生存率分析报告 泰坦尼克号生存率仅有38%的,可见此次事件救援不力,救生艇严重不足,且泰坦尼克号撞得是冰山,海水冷,没有救生艇,在水里冻死的乘客不少。 二,哪个年龄段存活率最高(青年人(18岁以下),中年人(18到50岁 ...

Sat Sep 22 19:56:00 CST 2018 1 3733
机器学习项目实战----泰坦尼克号获救预测(一)

一、任务基础 泰坦尼克号沉没是历史上最著名的沉船事故之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。造成海难失事的原因之一是乘客和机组人员没有足够的救生艇 ...

Sun Aug 11 01:00:00 CST 2019 3 2978
机器学习项目实战----泰坦尼克号获救预测(二)

四、特征重要性衡量 通过上面可以发现准确率有小幅提升,但是似乎得到的结果还是不太理想。我们可以发现模型似乎优化的差不多了,使用的特征似乎也已经使用完了。准确率已经达到了瓶颈,但是如果我们还想提高精度 ...

Mon Aug 12 17:24:00 CST 2019 0 934
kaggle 泰坦尼克号问题总结

学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了。 1,看到样本是,查看样本的分布和统计情况 通常遇到缺值的情况,我们会有几种常见 ...

Wed Jun 07 18:26:00 CST 2017 0 4070
泰坦尼克号之灾分析

大神经验: 1、 应用机器学习,千万不要一上来就试图做到完美,先撸一个baseline的model出来,再进行后续的分析步骤,一步步提高,所谓后续步骤可能包括『分析model现在的状态(欠/过拟合 ...

Sat Aug 18 19:41:00 CST 2018 1 1185
泰坦尼克号幸存预测

本次项目主要围绕Kaggle上的比赛题目: "给出泰坦尼克号上的乘客的信息, 预测乘客是否幸存" 进行数据分析 环境 win8, python3.7, jupyter notebook 目录 1. 项目背景 2. 数据概览 3. 特征分析 4. 特征工程 5. 构建模型 正文 ...

Thu Oct 25 01:37:00 CST 2018 2 5148
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM