hyperopt自动调参 在传统机器学习和深度学习领域经常需要调参,调参有些是通过通过对数据和算法的理解进行的,这当然是上上策,但还有相当一部分属于"黑盒" hyperopt可以帮助我们做很多索然无味的调参工作 示例 直接看代码以及注释比较直接,下面通过一个随机森林可以感受一下 ...
在此之前,调参要么网格调参,要么随机调参,要么肉眼调参。虽然调参到一定程度,进步有限,但仍然很耗精力。 自动调参库hyperopt可用tpe算法自动调参,实测强于随机调参。 hyperopt 需要自己写个输入参数,返回模型分数的函数 只能求最小化,如果分数是求最大化的,加个负号 ,设置参数空间。 本来最优参数fmin函数会自己输出的,但是出了意外,参数会强制转化整数,没办法只好自己动手了。 dem ...
2018-11-08 14:25 0 1205 推荐指数:
hyperopt自动调参 在传统机器学习和深度学习领域经常需要调参,调参有些是通过通过对数据和算法的理解进行的,这当然是上上策,但还有相当一部分属于"黑盒" hyperopt可以帮助我们做很多索然无味的调参工作 示例 直接看代码以及注释比较直接,下面通过一个随机森林可以感受一下 ...
一、介绍 hyperopt 是一个自动调参工具,与 sklearn 的 GridSearchCV 相比,hyperopt 具有更加完善的功能,且模型不必符合 sklearn 接口规范。 1.1. 项目地址 https://github.com/hyperopt/hyperopt 1.2. ...
一、安装 pip install hyperopt 二、说明 Hyperopt提供了一个优化接口,这个接口接受一个评估函数和参数空间,能计算出参数空间内的一个点的损失函数值。用户还要指定空间内参数的分布情况。 Hyheropt四个重要的因素:指定需要最小化的函数,搜索的空间,采样的数据集 ...
了LightGBM。该算法在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右。Lig ...
lightgbm使用leaf_wise tree生长策略,leaf_wise_tree的优点是收敛速度快,缺点是容易过拟合。 # lightgbm关键参数 # lightgbm调参方法cv 代码github地址 ...
# lightgbm调参方法cv 代码github地址 ...
1. 参数速查 使用num_leaves,因为LightGBM使用的是leaf-wise的算法,因此在调节树的复杂程度时,使用的是num_leaves而不是max_depth。 大致换算关系:num_leaves = 2^(max_depth)。它的值的设置应该小于 ...
可能fastText 已经过时了。不过毕竟还是一个轻便快捷的深度模型。 自动调参方式原文文档 facebook提供了两种自动调参方式,一种是命令行的,一种是基于python的。 本人不喜欢命令行的,因为大多数调参的状态都是在python中写边改的。还是python编辑器方便 ...