https://www.cnblogs.com/cxchanpin/p/7359672.html https://www.cnblogs.com/yangzsnews/p/7496639.html ...
https: blog.csdn.net zrh CSDN article details Logistic回归的极大似然估计求解参数的推导:https: blog.csdn.net LegenDavid article details 推导到最后要计算的方程 对各个参数求偏导,使其等于 ,这样联合概率取得最大值 极大似然 ,和Logistic回归采用 log损失函数 对各个参数求偏导,使其等于 ...
2018-10-30 19:21 0 1147 推荐指数:
https://www.cnblogs.com/cxchanpin/p/7359672.html https://www.cnblogs.com/yangzsnews/p/7496639.html ...
损失函数专题 范数 L0范数 L0范数是指向量中非0的元素的个数。如果用L0规则化一个参数矩阵W,就是希望W中大部分元素是零,实现稀疏。 L0范数的应用: 特征选择:实现特征的自动选择,去除无用特征。稀疏化可以去掉这些无用特征,将特征对应的权重置为零。 可解释 ...
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项 ...
监督学习中通常通过对损失函数最优化(最小化)来学习模型。 本文介绍了几种损失函数和正则化项以及正则化对模型的影响。 损失函数 损失函数度量模型一次预测的好坏,风险函数度量平均意义下模型预测的好坏。 模型的输入输出是随机变量(X,Y)遵循联合分布P(X,Y),损失函数的期望 ...
首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估 ...
一、对于回归问题,基本目标是建模条件概率分布p(t|x) 利用最大似然的方式:negative logarithm of the likelihood 这个函数可以作为优化目标,其中的第二项与参数无关,在优化的时候不用计算在内。实际中所用到的各种不同的目标函数不过是对于的形式做了 ...
机器学习中的损失函数 (着重比较:hinge loss vs softmax loss) 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x)">f(x)f(x) 与真实值 Y">YY 的不一致程度 ...
1. L2范数损失函数,也叫欧几里得损失函数,实际上是预测值到目标的距离的平方,tensorflow中用法:tf.nn.l2_loss(),这个损失函数的优点在于曲线在接近目标时足够平缓,所以可以利用这个特点在接近目标时,逐渐缓慢收敛过去。这个损失函数一般用在回归问题。 2. L1范数损失函数 ...