1. 流处理的场景 我们在定义流处理时,会认为它处理的是对无止境的数据集的增量处理。不过对于这个定义来说,很难去与一些实际场景关联起来。在我们讨论流处理的优点与缺点时,先介绍一下流处理的常用场景。 ...
目录 Part V. Streaming Stream Processing Fundamentals .概念 .Stream Processing Design Points .Spark s Streaming APIs Structured Streaming Basics .介绍和概念 .Transformations and Actions .Input and Output .Str ...
2018-10-29 18:24 0 3179 推荐指数:
1. 流处理的场景 我们在定义流处理时,会认为它处理的是对无止境的数据集的增量处理。不过对于这个定义来说,很难去与一些实际场景关联起来。在我们讨论流处理的优点与缺点时,先介绍一下流处理的常用场景。 ...
5. 实战Structured Streaming 5.1. Static版本 先读一份static 数据: val static = spark.read.json("s3://xxx/data/activity-data/") static.printSchema root ...
简介 Spark Streaming Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算。 Structured ...
简介 Spark Streaming Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算 Structured Streaming ...
Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架。这篇是介绍Spark Structured Streaming的基本开发方法。以Spark 自带的example进行测试和介绍,其为 ...
状态保存: structured streaming 提供了两个自定义分组聚合函数:mapGroupsWithState,flatMapGroupsWithState,允许开发者基于事件时间或者处理时间进行有状态的流计算 ...
流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理;对应的批量计算,更准确的说法是bounded data(processing),亦即有明确边界的数据的处理。 近年 ...
前言 Structured Streaming 消费 Kafka 时并不会将 Offset 提交到 Kafka 集群,本文介绍利用 StreamingQueryListener 间接实现对 Kafka 消费进度的监控。 基于StreamingQueryListener向Kafka ...