混淆矩阵是一种用于性能评估的方便工具,它是一个方阵,里面的列和行存放的是样本的实际类vs预测类的数量。 P =阳性,N =阴性:指的是预测结果。 T=真,F=假:表示 实际结果与预测结果是否一致,一致为真,不一致为假。 TP=真阳性:预测结果为P,且实际与预测一致。 FP=假阳性:预测 ...
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标。 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广。 准确率 准确率是最好理解的评价指标,它是一个比值: 准确率 cfrac 算法分类正确的数据个数 输入算法的数据的个数 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的 ...
2018-10-29 12:44 0 9359 推荐指数:
混淆矩阵是一种用于性能评估的方便工具,它是一个方阵,里面的列和行存放的是样本的实际类vs预测类的数量。 P =阳性,N =阴性:指的是预测结果。 T=真,F=假:表示 实际结果与预测结果是否一致,一致为真,不一致为假。 TP=真阳性:预测结果为P,且实际与预测一致。 FP=假阳性:预测 ...
混淆矩阵、准确率、召回率、ROC曲线、AUC 假设有一个用来对猫(cats)、狗(dogs)、兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结。假设总共有 27 只动物:8只猫, 6条狗,13只兔子。结果的混淆矩阵如上图所示,我们可以发现 ...
的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。 准确率确实是一个很好很直观的评价指标,但是 ...
本文的部分内容摘自韩家炜《数据挖掘》 ---------------------------------------------------------------------------------- 四个术语 混淆矩阵(Confusion Matrix) 评估度量 ...
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。也就是损失函数是0-1损失时测试数据集上的准确率。 下面在介绍时使用一下例子: 一个班级有20个女生,80个男生。现在一个分类器需要从100人挑选出所有的女生。该分类器从中选 ...
准确率、精确率(查准率)、召回率(查全率)、F1值、ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标 ...
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到)。其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了 ...
混淆矩阵,精准率和召回率 评论回归算法的好坏点击这里 评价分类算法是不能单单靠一个分类准确度就可以衡量的,单用一个分类准确度是有问题的 比如说,一个癌症预测系统,输入体检信息,就可以判断是否得了癌症,这个系统的预测准确率有99.9%,但是不能说这个系统就是好的,因为如果患有癌症的概率是0.1 ...