CNN中feature map、卷积核、卷积核的个数、filter、channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/details/82529397 作者写的很好,解决了很多基础问题。 feather map ...
实际上在卷积操作的时候,比如说,我某一层输出的feature map的size为 channel的数目为 ,设经过某卷积层之后,网络输出的feature map的channel的数目为 从 个channel到 个channel,假设卷积核的kernel为 ,那么这个卷积层的参数就有 ,那么,对于一个具体的操作而言 比如说,输出feature map有 个通道,对于输出feature map的第一个 ...
2018-10-24 17:27 0 1400 推荐指数:
CNN中feature map、卷积核、卷积核的个数、filter、channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/details/82529397 作者写的很好,解决了很多基础问题。 feather map ...
个人学习CNN的一些笔记,比较基础,整合了其他博客的内容 feature map的理解在cnn的每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起(像豆腐皮竖直的贴成豆腐块一样),其中每一个称为一个feature map。 feature map ...
具体可以看这篇文章,写的很详细。https://blog.csdn.net/xys430381_1/article/details/82529397 ...
feature map、卷积核、卷积核个数、filter、channel的概念解释 feather map的理解 在cnn的每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起(像豆腐皮一样),其中每一个称为一个feature map。 feather map 是怎么生成 ...
原文地址:https://blog.csdn.net/xys430381_1/article/details/82529397 feature map、卷积核、卷积核个数、filter、channel的概念解释 feather map的理解 在cnn的每个卷积层,数据都是 ...
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同的,后来查阅了资料发现并不相同,将计算公式贴在这里,以便查阅: caffe中: TF中 ...
(1)边长的计算公式是: output_h =(originalSize_h+padding*2-kernelSize_h)/stride +1 输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel ...
前序: 上图是输入是 6x6x3的彩色图片【彩色图片一般就是3个feature map(红绿蓝)=彩色图片channel 的数量】,经过2个不同的卷积核,则产生两个不同特征的输出(输出的图片就可以看做是feature map) feature map的数量:该层卷积核的个数,有多少个 ...