from_logits是一个布尔量,当from_logits=True的时候,该层会将output做normalize(softmax) 因此,一个直观的理解就是layerA with activa ...
准备 先说一下什么是logit,logit函数定义为: 是一种将取值范围在 , 内的概率映射到实数域 inf,inf 的函数,如果p . ,函数值为 p lt . ,函数值为负 p gt . ,函数值为正。 相对地,softmax和sigmoid则都是将 inf,inf 映射到 , 的函数。 在tensorflow里的 logits 指的其实是,该方法是在logit数值上使用softmax或者si ...
2018-10-23 14:13 0 755 推荐指数:
from_logits是一个布尔量,当from_logits=True的时候,该层会将output做normalize(softmax) 因此,一个直观的理解就是layerA with activa ...
平方损失函数求导后,偏导太小,迭代更新慢,所以考虑用交叉熵损失函数(注意标记值和预测值不能写反了)(标记值为0或1,对0取对数是不存在的额): 交叉熵损失函数满足作为损失函数的两大规则:非负性,单调一致性 ...
命名空间:tf.nn 函数 作用 说明 sigmoid_cross_entropy_with_logits 计算 给定 logits 的S函数 交叉熵。 测量每个类别独立且不相互排斥的离散分类任务中的概率 ...
。 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数。对于深度学习而言,交叉熵函数要优于 ...
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足: 任意x p(X ...
Tensorflow中的交叉熵函数tensorflow中自带四种交叉熵函数,可以轻松的实现交叉熵的计算。 tf.nn.softmax_cross_entropy_with_logits() tf.nn.sparse_softmax_cross_entropy_with_logits ...
原文地址:https://www.cnblogs.com/kyrieng/p/8694705.html 1、信息熵 (information entropy) 熵 (entropy) 这一词最初来源于热力学。1948年,克劳德·爱尔伍德·香农将热力学中的熵引入信息论,所以也被称为香农熵 ...
1、交叉熵的定义: 在信息论中,交叉熵是表示两个概率分布p,q,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,其中,用非真实分布q来表示某个事件发生所需要的平均比特数。从这个定义中,我们很难理解交叉熵的定义。下面举个例子来描述一下: 假设现在有一个样本集中两个概率分布p,q ...