二分类问题可能是应用最广泛的机器学习问题。今天我们将学习根据电影评论的文字内容将其划分为正面或负面。 一、数据集来源 我们使用的是IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000条严重两极分化的评论。为了避免模型过拟合只记住训练数据,我们将数据集分为用于训练的25000条评论 ...
我觉得把课本上的案例先自己抄一遍,然后将书看一遍。最后再写一篇博客记录自己所学过程的感悟。虽然与课本有很多相似之处。但自己写一遍感悟会更深 电影评论分类 二分类问题 本节使用的是IMDB数据集,使用Jupyter作为编译器。这是我刚开始使用Jupyter,不得不说它的自动补全真的不咋地 以前一直用pyCharm 但是看在能够分块运行代码的份上,忍了。用pyCharm敲代码确实很爽,但是调试不好调试 ...
2018-10-20 13:50 2 1798 推荐指数:
二分类问题可能是应用最广泛的机器学习问题。今天我们将学习根据电影评论的文字内容将其划分为正面或负面。 一、数据集来源 我们使用的是IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000条严重两极分化的评论。为了避免模型过拟合只记住训练数据,我们将数据集分为用于训练的25000条评论 ...
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行。)中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行。 电影评论分类:二分类 二分类可能是机器学习最常解决的问题。我们将基于评论的内容将电影评论 ...
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样;在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分类(在后面的文章中会详细讨论如何使用自己的数据去训练模型,或者让保存下来的模型去处理自己的数据 ...
二分类问题示例: 首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比如这只猫,如果识别这张图片为猫,则输出标签1作为结果;如果识别出不是猫,那么输出标签0作为结果(这也就是著名的cat和non cat问题)。现在我们可以用字母y来表示输出 ...
我们用下列的这些符号来分别表示我们训练集当中的输入的值x以及输出的值Y。由于是二分分类的问题,因此y一般仅具有两个值0和1。x则一般可以用nx来表示单个训练集当中x的特征的个数,比如一幅图像有10000个特征,那么我们输入的X所对应的nx=10000.假设我们的训练集一共有10个单个的训练集,则m ...
一、模型的构建 银行在放贷之前都会对客户做一个评估,来判定其是否有大概率会违约。这里我们用1表示其不会违约,用0表示会违约,假设影响因素有m个。 逻辑回归的目的是得到一个p(概率),如果给定一个临界值就可判断其属于哪一类,一般默认临界值为0.5,若p>0.5,则判定为第一类,既不会违约 ...
本节构建一个网络,将路透社新闻划分为46个互斥的主题,也就是46分类 案例2:新闻分类(多分类问题) 1. 加载数据集 将数据限定在10000个最常见出现的单词,8982个训练样本和2264个测试样本 8982 2246 2. ...
二分类 分类问题是机器学习中非常重要的一个课题。现实生活中有很多实际的二分类场景,如对于借贷问题,我们会根据某个人的收入、存款、职业、年龄等因素进行分析,判断是否进行借贷;对于一封邮件,根据邮件内容判断该邮件是否属于垃圾邮件。 图1-1 分类示意图 回归作为分类的缺陷 由于回归 ...