记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy、精度precision、召回率recall、F1-score等评价指标的计算方式: (右键点击在新页面打开,可查看清晰图像) 简单版: ******************************************************************** ...
轉自https: blog.csdn.net sinat article details 四个基本概念TP True Positive 真阳性:预测为正,实际也为正 FP False Positive 假阳性:预测为正,实际为负 FN False Negative 假阴性:预测与负 实际为正 TN True Negative 真阴性:预测为负 实际也为负。 一致判真假,预测判阴阳。 以分类问题为例 ...
2018-10-18 21:54 2 2079 推荐指数:
记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy、精度precision、召回率recall、F1-score等评价指标的计算方式: (右键点击在新页面打开,可查看清晰图像) 简单版: ******************************************************************** ...
分类模型的F1分值、Precision和Recall 计算过程 引入 通常,我们在评价classifier的性能时使用的是accuracy 考虑在多类分类的背景下 accuracy = (分类正确的样本个数) / (分类的所有样本个数) 这样做其实看上去也挺不错的,不过可能会出现一个 ...
看到一个使用 tf 实现的 precision、recall 和 f1,仔细看发现这个实现里 micro-precision、micro-recall、micro-f1 相等,以前从没认真想过这个问题,但是仔细一想还真是这样,于是赶紧用 google 搜了一下,发现还有篇博客介绍了并举例子验证 ...
也许是由于上学的时候一直搞序列标注任务,多分类任务又可以简化为简单的二分类任务,所以一直认为PRF值很简单,没啥好看的。然鹅,细看下来竟有点晦涩难懂,马篇博留个念咯~ 前言 PRF值分别表示准确率(Precision)、召回率(Recall)和F1值(F1-score),有机器学习基础的小伙伴 ...
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision、Recall、F-score(F1-measure)TPR、FPR、TNR、FNR、AUCAccuracy 真实 ...
文章来自:一个宝藏微信公众号【机器学习炼丹术】 基本概念 首先,要背住的几个概念就是:accuracy,precision,recal, TP,FP,TN,FN TP:true positive。预测是正确的正样本 FP:false positive。预测是错误的正样本 TN ...
目录 结果表示方法 常规指标的意义与计算方式 ROC和AUC 结果表示方法 TP – True Positive FN – False Negative TN – True Negative FP – False Positive ...
最近做了一些分类模型,所以打算对分类模型常用的评价指标做一些记录,说一下自己的理解。使用何种评价指标,完全取决于应用场景及数据分析人员关注点,不同评价指标之间并没有优劣之分,只是各指标侧重反映的信息不同。为了便于后续的说明,先建立一个二分类的混淆矩阵 ,以下各参数的说明都是针对二元分类 ...