原文:tensorflow中添加L2正则化损失

方法有几种,总结一下方便后面使用。 . tensorflow自动维护一个tf.GraphKeys.WEIGHTS集合,手动在集合里面添加 tf.add to collection 想要进行正则化惩罚的变量。 然后创建regularizer tf.contrib.layers.l regularizer REGULARIZATION RATE , 再应用函数regularization loss t ...

2018-10-16 19:01 0 7545 推荐指数:

查看详情

tensorflow L1和L2正则化

tf.keras.regularizers下面有l1和l2正则化器,但是该正则化器的l2有点不一样,从 ...

Sat Feb 29 00:53:00 CST 2020 0 2796
TensorFlow L2正则化

TensorFlow L2正则化 L2正则化在机器学习和深度学习非常常用,在TensorFlow中使用L2正则化非常方便,仅需将下面的运算结果加到损失函数后面即可 ...

Mon Dec 25 19:46:00 CST 2017 0 4186
L1和L2损失函数和正则化

作为损失函数 L1范数损失函数   L1范数损失函数,也被称之为平均绝对值误差(MAE)。总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 ...

Wed Jan 29 23:16:00 CST 2020 0 744
L1,L2正则化损失

L1和L2是指范数,分别为1范数和2范数。 损失 L1损失 MAE(Mean absolute error)损失就是L1损失,目标值\(\boldsymbol{y}\),目标函数\(f(\cdot)\),输入值\(\boldsymbol{x}\),则: \[\begin ...

Thu Jan 14 05:54:00 CST 2021 0 475
损失函数公式推导以及L2正则化

损失函数公式推导以及L2正则化 假设预测函数为 \(h\),预测函数中出现的所有常量为 \(\Theta\)(常量可能不止一个,所以用大写的来表示) 例如 \(h=ax+bx^2+c\),那么 \(\Theta=(a,b,c)\) 那么 \(h_{\Theta ...

Tue Mar 15 04:06:00 CST 2022 0 689
L1正则化L2正则化

  L1和L2正则都是比较常见和常用的正则化项,都可以达到防止过拟合的效果。L1正则化的解具有稀疏性,可用于特征选择。L2正则化的解都比较小,抗扰动能力强。 L2正则化   对模型参数的L2正则项为      即权重向量各个元素的平方和,通常取1/2。L2正则也经常被称作“权重衰减 ...

Fri Sep 29 01:58:00 CST 2017 0 9067
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM