数据清洗和特征选择 数据清洗 清洗过程 数据预处理: 选择数据处理工具:数据库、Python相应的包; 查看数据的元数据及数据特征; 清理异常样本数据: 处理格式或者内容错误的数据; 处理逻辑错误数据:数据去重,去除/替换 ...
一 缺省值填充 .老版本用Imputer . 新版本用SimpleImputer . . . . . . . . . . . . . . . . 二 编码 . 哑编码 独热编码 . 标签编码 . 将特征值映射列表转换为向量 . hash转换 三 二值化 四 标准化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
2018-10-15 00:48 0 1174 推荐指数:
数据清洗和特征选择 数据清洗 清洗过程 数据预处理: 选择数据处理工具:数据库、Python相应的包; 查看数据的元数据及数据特征; 清理异常样本数据: 处理格式或者内容错误的数据; 处理逻辑错误数据:数据去重,去除/替换 ...
背景 随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅能给美团业务发展方向提供决策支持,也为业务的迭代指明了方向。目前在美团的团购系统中大量地应用到了机器学习和数据挖掘技术,例如个性化推荐 ...
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:汪毅雄 导语:本文详细的解释了机器学习中,经常会用到数据清洗与特征提取的方法PCA,从理论、数据、代码三个层次予以分析。 机器学习,这个名词大家都耳熟能详。虽然这个概念很早就被人提出来 ...
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由brzhang发表 数据清洗 首先,为何需要对数据进行清洗 数据清洗的工作绝壁是非常枯燥的,做数据研究的的人绝对无法避开这个环节,其根本原因是因为我们从各种渠道拿到的数据可能会出现: 1、不合理的数据 ...
2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺失值计算 2.5 数据变换3 特征选择 ...
特征选择方法初识: 1、为什么要做特征选择在有限的样本数目下,用大量的特征来设计分类器计算开销太大而且分类性能差。2、特征选择的确切含义将高维空间的样本通过映射或者是变换的方式转换到低维空间,达到降维的目的,然后通过特征选取删选掉冗余和不相关的特征来进一步降维。3、特征选取的原则获取尽可能小 ...
特征选择是一个重要的数据预处理过程,在现实机器学习任务中,获得数据之后通常先进行特征选择,此后在训练学习器,如下图所示: 进行特征选择有两个很重要的原因: 避免维数灾难:能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少 ...
1.特征选择 特征选择是降维的一种方法,即选择对预测结果相关度高的特征或者消除相似度高的特征,以提高估计函数的准确率或者提高多维度数据集上的性能。 2.删除低方差特征 1)思路:设置一个阀值,对每个特征求方差,如果所求方差低于这个阀值,则删除此特征 ...