“探索推荐引擎内部的秘密”系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用。同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法。本文 ...
基于内容的推荐引擎是怎么工作的 基于内容的推荐系统,正如你的朋友和同事预期的那样,会考虑商品的实际属性,比如商品描述,商品名,价格等等。如果你以前从没接触过推荐系统,然后现在有人拿枪指着你的头,强迫你在三十秒之内描述出来,你可能会描述这样一个基于内容的系统:呃,呃,我可能会给你看一大堆来自同一个厂家,并且拥有类似的说明的产品。 你正在利用商品本身的属性来推荐类似的商品。这样做非常合理,因为这就是 ...
2018-10-12 16:57 0 845 推荐指数:
“探索推荐引擎内部的秘密”系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用。同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法。本文 ...
这里采用的是.net的一个引用NReco.Recommender.dll,这是一个国外电影网站推荐系统衍生而来的,有兴趣的可以到他们的官网看看。 以图书商城为例 MVC 构造行为数据 首先需要对数据库进行设计,增加一张用户的行为数据表,记录用户访问网站的行为,例如商城的一般记录浏览 ...
转载自:https://www.jianshu.com/p/1fd2b97fc765 原文链接:https://mp.weixin.qq.com/s/lUP2BehOh7KczR3WRnOqFw 爱奇艺推荐系统介绍 我们的推荐系统主要分为两个阶段,召回阶段和排序阶段 ...
目前,推荐系统广泛应用于电商、信息流和地图。工业级推荐系统架构一般以召回+推荐作为大框架。其中,以算法区分,如下图所示。 离线/线上指标如下图所示: 个性化召回算法是根据用户的属性行为上下文等信息从物品全集中选取其感兴趣的物品作为候选集,召回决定了最终推荐结果的天花板。 个性化召回分为 ...
推荐系统核心任务是排序,从线上服务角度看,就是将数据从给定集合中数据选择出来,选出后根据一定规则策略方法 进行排序。 线上服务要根据一定规则进行架构设计,架构设计是什么?每一次权衡取舍都是设计,设计需要理解需求、深入理解需 求基础上做权衡取舍。复杂系统架构需要 ...
1 推荐技术 1)协同过滤: (1)基于user的协同过滤:根据历史日志中用户年龄,性别,行为,偏好等特征计算user之间的相似度,根据相似user对item的评分推荐item。缺点:新用户冷启动问题和数据稀疏不能找到置信 ...
今天的分享将为大家解答以下几个问题:你的公司是否适合采用个性化推荐?如果需要个性化推荐,该如何做好?产品运营在参与到一个推荐系统的构建当中,有哪些常见的坑?有哪些可以避开这些坑的一些简单方法?以及如何修炼成一个优秀的推荐产品经理? 一、“四个关键”为你揭开推荐系统的神秘面纱 个人认为,推荐系统 ...
原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78820529 请安装TensorFlow1.0,Python3.5 项目地址: https://github.com/chengstone ...