1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有100 ...
在统计学中,损失函数是一种衡量损失和错误 这种损失与 错误地 估计有关,如费用或者设备的损失 程度的函数。假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a y ,而训练的本质就是寻找损失函数最小值的过程。 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数。对于深度学习而言,交叉熵函数要优于均方差函数,原因 ...
2018-10-12 15:20 1 7176 推荐指数:
1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有100 ...
关于交叉熵在loss函数中使用的理解 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些 ...
引言 在Quora Question Pairs比赛中,我们的目标是判断给定的两个问题的语义信息是否相同(即是否为重复问题),使用的评估标准是log loss,交叉熵损失函数 \[\frac{1}{N}\sum_{i=0}^{N}{-y_i \log{\widehat{y}_i ...
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足: 任意x p(X ...
理解深度学习中的激活函数 在这个文章中,我们将会了解几种不同的激活函数,同时也会了解到哪个激活函数优于其他的激活函数,以及各个激活函数的优缺点。 1. 什么是激活函数? 生物神经网络是人工神经网络的起源。然而,人工神经网络(ANNs)的工作机制与大脑的工作机制并不是十分的相似。不过在我们了解 ...
先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易。为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: sklearn的机器学习使用流程: from sklearn.模型簇 ...
『深度概念』度量学习中损失函数的学习与深入理解 0. 概念简介 度量学习(Metric Learning),也称距离度量学习(Distance Metric Learning,DML) 属于机器学习的一种。其本质就是相似度的学习,也可以认为距离学习。因为在一定条件下,相似度和距离 ...
深度学习最终目的表现为解决分类或回归问题。在现实应用中,输出层我们大多采用softmax或sigmoid函数来输出分类概率值,其中二元分类可以应用sigmoid函数。 而在多元分类的问题中,我们默认采用softmax函数,具体表现为将多个神经元的输出,映射到0 ~ 1的区间中,按概率 ...