本文主要参考来源:图像处理其实很简单 线性滤波和卷积的关系:线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素 ...
池化层的作用 在卷积神经网络中,卷积层之间往往会加上一个池化层。池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量。使用池化层即可以加快计算速度也有防止过拟合的作用。 为什么max pooling要更常用 通常来讲,max pooling的效果更好,虽然max pooling和average pooling都对数据做了下采样,但是max pooling感觉更像是做了特征选择, ...
2018-10-09 15:35 0 2391 推荐指数:
本文主要参考来源:图像处理其实很简单 线性滤波和卷积的关系:线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素 ...
每个卷积核具有长、宽、深三个维度。 卷积核的长、宽都是人为指定的,长X宽也被称为卷积核的尺寸,常用的尺寸为3X3,5X5等;卷积核的深度与当前图像的深度(feather map的张数)相同,所以指定卷积核时,只需指定其长和宽两个参数。 例如,在原始图像层 (输入层),如果图像是灰度图像 ...
卷积就是滤波操作,将中心点与其邻域加权相加,得到的值就是中心点的新值。滤波之后的中心点的像素值用它周围的点的像素值的加权平均代替,使得边界变得更加模糊(低通滤波) 高斯核 高斯核的函数图像是一个正态分布钟形线,坐标越趋近中心点,值就越大,反之越小。也就是说离中心点越近权值就越 ...
图像处理(卷积) 卷积的计算步骤:(动态演示) 对h(n)绕纵轴折叠,得h(-n); 对h(-m)移位得h(n-m); 将x(m)和h(n-m)所有对应项相乘之后相加得离散卷积结果y(n ...
1. 池化层:由1个filter组成,对图片 / 输入矩阵进行空间上的降采样处理,压缩图像的高度和宽度。池化层的filter不是用来得到feature map,而是用来获取filter范围内的特定值。池化层的filter并不设置特定的权值,通常只是用来获取感受野范围内的最大值或平均值。 降采样 ...
以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...
构建了最简单的网络之后,是时候再加上卷积和池化了。这篇,虽然我还没开始构思,但我知道,一 ...