写在前面的话: 我现在大四,毕业设计是做一个基于大数据的用户画像研究分析。所以开始学习数据挖掘的相关技术。这是我学习的一个新技术领域,学习难度比我以往学过的所有技术都难。虽然现在在一家公司实习,但是工作还是挺忙的,经常要加班,无论工作多忙,还是决定要写一个专栏,这个专栏就写一些数据挖掘算法 ...
pandas之get dummies 方法:pandas.get dummies data,prefix None,prefix sep ,dummy na False,columns None,sparse False,drop first False 该方法可以将类别变量转换成新增的虚拟变量 指示变量 参数说明: data:array like Series DataFrame , 输入数据 ...
2018-10-05 20:21 0 1179 推荐指数:
写在前面的话: 我现在大四,毕业设计是做一个基于大数据的用户画像研究分析。所以开始学习数据挖掘的相关技术。这是我学习的一个新技术领域,学习难度比我以往学过的所有技术都难。虽然现在在一家公司实习,但是工作还是挺忙的,经常要加班,无论工作多忙,还是决定要写一个专栏,这个专栏就写一些数据挖掘算法 ...
贝叶斯定理(Bayes Theorem) 朴素贝叶斯分类(Naive Bayes Classifier) 贝叶斯分类算法(NB),是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型数据进行分类的算法。 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现 ...
数据挖掘入门系列教程(七)之朴素贝叶斯进行文本分类 贝叶斯分类算法是一类分类算法的总和,均以贝叶斯定理为基础,故称之为贝叶斯分类。而朴素贝叶斯分类算法就是其中最简单的分类算法。 朴素贝叶斯分类算法 朴素贝叶斯分类算法很简单很简单,就一个公式如下所示: \[P(B|A) = \frac ...
隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式 ...
很久的时间没有更新了,一是因为每天加班到比较晚的时间,另外,公司不能上网,回家后就又懒得整理,最近在看机器学习实战的书籍,因此才又决定重新拾起原先的博客! 今天讲的是第三章的贝叶斯分类方法,我们从一个简简单单的例子开始入手:首先看(1)图中的例子,假设有一个装了7块时候的罐子,其中3块时 ...
一、概述 本实验做的是一个很常见的数据挖掘任务:新闻文本分类。 语料库来自于搜狗实验室2008年和2012年的搜狐新闻数据, 下载地址:https://www.sogou.com/labs/resource/cs.php 实验工作主要包括以下几步: 1)语料库的数据预处理; 2)文本建模 ...
朴素贝叶斯分类 1.1、摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论 ...
调用自己写的朴素贝叶斯函数正确率是84.12%,调用sklearn中的BernoulliNB函数,正确率是84.27% 调用sklearn中的BernoulliNB函数的代码如下: 结果截屏: 优化:加入主成分分析方法,进行降维操作,代码如下: 结果截屏: 待修改中 ...