简述 卢卡斯定理是用于求c(n,m) mod p,p为素数的值。 题目中求n和m很大的组合数时,结果一般都会溢出,所以经常会求组合数%p的某个值。当p大于m时,我们可以直接根据定义求分母在模p意义下的乘法逆元求出结果: 但当p<m时,分母的乘法逆元可能不存在(m可能是p ...
扩展卢卡斯定理用于求如下式子 其中 p 不一定是质数 : C n m mod p 我们将这个问题由总体到局部地分为三个层次解决。 层次一:原问题 首先对 p 进行质因数分解: p prod i p i k i 显然 p i k i 是两两互质的,所以如果分别求出 C n m mod p i k i ,就可以构造出若干个形如 C n m a i mod p i k i 的方程,然后用中国剩余定理即可 ...
2018-10-02 12:03 3 1390 推荐指数:
简述 卢卡斯定理是用于求c(n,m) mod p,p为素数的值。 题目中求n和m很大的组合数时,结果一般都会溢出,所以经常会求组合数%p的某个值。当p大于m时,我们可以直接根据定义求分母在模p意义下的乘法逆元求出结果: 但当p<m时,分母的乘法逆元可能不存在(m可能是p ...
卢卡斯定理 对于非负整数$a$,$b$和质数$p$,有$$C_{a}^{b} \equiv C_{a~mod~p}^{b~mod~p} \cdot C_{\lfloor{a/p}\rfloor}^{\lfloor{b/p}\rfloor}~~\left( {mod~p} \right ...
定义 若 \(p\) 为质数,且\(a\ge b\ge1\),则有: \[C_{a}^{b}\equiv C_{a/p}^{b/p}\cdot C_{a (mod\,p)}^{b(mod\, ...
公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$ 代码如下 例题 HDU 3037 解析:m个相同的豆子,放到n个不同的树里,有多少种方法。有$C_{n+m}^m$种。具体详解请看下面的扩展中的插板法。 代码 ...
前几天gryz组织我们听了几天数论,蒟蒻 Nanjo_Qi 自然是听得一点问题也没有。 于是只能自己yy着学一点其他的数学的东西,正巧在那之前刚刚学会卢卡斯定理,于是现在就来水一篇博客。 其实是不想做题了。正巧机房装修,吵的一批。 卢卡斯(Lucas)定理是什么? 他是用来求组合数 C(n ...
------------------------------------------------------------------------------------------- 这是蒟蒻对扩展卢卡斯的一些见解如有错误欢迎指出,不胜感激 普通卢卡斯 ...
记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p , n<=1e18,m& ...
据说这俩是小学奥数内容?完了我菜成一团没上过小学 本文只研究正整数\(A\)的约数个数和约数和。首先对\(A\)分解质因数 \[A=\prod_i^n p_i^{a_i} \ (p_i是质数) \] 约数个数定理 先看结论 \[num=\sum_i^n (a_i+1 ...