原文:1. K近邻算法(KNN)

. K近邻算法 KNN . KNN和KdTree算法实现 . 前言 K近邻法 k nearest neighbors,KNN 是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用,就是 物以类聚,人以群分 。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了。这里就运用了KNN的思想。KNN方法既可以做分类,也可以做回归,这点和决策树算法相同。 KNN做 ...

2018-09-27 22:34 0 6955 推荐指数:

查看详情

K近邻算法-KNN

何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居。为何要找邻居?打个比方来说,假设你来到一个陌生的村庄,现在你要找到与你有着相似特征的人群融入 ...

Sun Jun 26 01:57:00 CST 2016 0 1701
K-近邻算法KNN

K-近邻算法 K-K个 N-nearest-最近 N-Neighbor 来源:KNN算法最早是由Cover和Hart提出的一种分类算法 定义 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 距离公式 ...

Wed Nov 13 19:42:00 CST 2019 0 279
K-近邻算法KNN

keyword     文本分类算法、简单的机器学习算法、基本要素、距离度量、类别判定、k取值、改进策略 摘要     kNN算法是著名的模式识别统计学方法,是最好的文本分类算法之一,在机器学习分类算法中占有相当大的地位 ...

Tue Oct 09 04:20:00 CST 2018 0 4011
K-近邻算法KNN

KNN算法是采用测量不同特征向量之间的距离的方法进行分类。 工作原理:存在一个数据集,数据集中的每个数据都有对应的标签,当输入一个新的没有标签的数据时,KNN算法找到与新数据特征量最相似的分类标签。 KNN算法步骤: (1)选择邻近的数量k和距离度量方法; (2)找到待分类样本的k个最近邻 ...

Wed Apr 18 16:46:00 CST 2018 0 1319
KNN算法(K近邻算法)实现与剖析

KNNK-Nearest Neighbors)算法,又称K近邻算法,单从字面意思我们就能知道,这个算法肯定是和距离有关的。 KNN算法的核心思想: 在一个特征空间中,如果某个样本身边和他最相邻的K个样本大多都属于一个类别,那么这个样本在很大程度上也属于这个类别,且该样本同样具有这个类别的特性 ...

Fri Mar 27 04:52:00 CST 2020 0 630
分类算法k-近邻算法KNN

一、k-近邻算法概述 1、什么是k-近邻算法 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 2、欧式距离 两个样本的距离可以通过如下公式计算,又叫欧式距离。比方说计算a(a1,a2,a3),b(b1,b2,b3)样本 ...

Sat May 30 07:38:00 CST 2020 0 586
TensorFlow实现knnk近邻算法

首先先介绍一下knn的基本原理: KNN是通过计算不同特征值之间的距离进行分类。 整体的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象 ...

Sat Jan 06 04:07:00 CST 2018 0 4809
【机器学习】k近邻算法kNN

一、写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Learning in Action一书和Ng的公开课,当然仅有这些是远远不够 ...

Sun Nov 02 00:56:00 CST 2014 0 2569
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM