目录 梯度下降法 机器学习中的梯度下降法 最速下降法 二次型目标函数 牛顿法 Levenberg-Marquardt 修正 梯度下降法和牛顿法谁快? 共轭方向法 ...
在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解。在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法。由于两种方法有些相似,我特地拿来简单地对比一下。下面的内容需要读者之前熟悉两种算法。 梯度下降法 梯度下降法用来求解目标函数的极值。这个极值是给定模型给定数据之后在参数空间中搜索找到的。迭代过程为: 可以看出,梯度下降法 ...
2018-09-27 16:40 0 3357 推荐指数:
目录 梯度下降法 机器学习中的梯度下降法 最速下降法 二次型目标函数 牛顿法 Levenberg-Marquardt 修正 梯度下降法和牛顿法谁快? 共轭方向法 ...
机器学习的本质是建立优化模型,通过优化方法,不断迭代参数向量,找到使目标函数最优的参数向量。最终建立模型 通常用到的优化方法:梯度下降方法、牛顿法、拟牛顿法等。这些优化方法的本质就是在更新参数。 一、梯度下降法 0、梯度下降的思想 · 通过搜索方向和步长来对参数进行更新。其中搜索 ...
参考知乎:https://www.zhihu.com/question/19723347 这篇博文讲牛顿法讲的非常好:http://blog.csdn.net/itplus/article/details/21896453 梯度下降法 ...
1 前言 机器学习和深度学习里面都至关重要的一个环节就是优化损失函数,一个模型只有损失函数收敛到一定的值,才有可能会有好的结果,降低损失的工作就是优化方法需做的事。常用的优化方法:梯度下降法家族、牛顿法、拟牛顿法、共轭梯度法、Momentum、Nesterov Momentum ...
一、简介 梯度下降法(gradient decent)是一个最优化算法,通常也称为最速下降法。常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。 梯度下降法是求解无约束最优化问题的一种最常用的方法,它是一种迭代算法,每一步需要求解目标函数的梯度向量。 问题抽象 是 上具有一阶 ...
前言 以下内容是个人学习之后的感悟,转载请注明出处~ 梯度下降法 一、简介 梯度下降法(gradient decent)是一个最优化算法,通常也称为最速下降法。常用于机器学习和人工智能当中用来递归性地 逼近最小偏差模型。 二、原理 梯度下降法 ...
梯度下降(最速下降法) 梯度下降法是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法 ...
目录 一、牛顿法与拟牛顿法 1、牛顿法 1.1 原始牛顿法(假设f凸函数且两阶连续可导,Hessian矩阵非奇异) 算法1.1 牛顿法 1.2 阻尼牛顿法 ...