原文:反向传播公式推导

神经网络中权重 w l ij 的改变将影响到接下来的网络层,直到输出层,最终影响损失函数 color red 公式推导符号说明 符号 说明 n l 网络层数 y j 输出层第 j 类 标签 S l 第 l 层神经元个数 不包括偏置 g x 激活函数 w l ij 第 l 层第 j 个单元与第 l 层第 i 个单元之间的连接参数 b l i 第 l 层第 i 个单元的偏置 z l i 第 l 层第 ...

2018-09-26 17:32 0 1571 推荐指数:

查看详情

反向传播算法”过程及公式推导

转载自 :《 “反向传播算法”过程及公式推导(超直观好懂的Backpropagation)》 前言 入门机器学习,阅读很多文章,都强调对于基础概念都需要好好了解。 想起当时自己刚入门深度学习的时候,当时对神经网络的“反向传播”机制不是很理解(这对理解以后的很多概念来说,很重 ...

Fri Jan 10 22:08:00 CST 2020 0 3055
反向传播算法(过程及公式推导

一、反向传播的由来 在我们开始DL的研究之前,需要把ANN—人工神经元网络以及bp算法做一个简单解释。关于ANN的结构,我不再多说,网上有大量的学习资料,主要就是搞清一些名词:输入层/输入神经元,输出层/输出神经元,隐层/隐层神经元,权值,偏置,激活函数接下来我们需要知道ANN是怎么训练的,假设 ...

Mon Oct 30 05:19:00 CST 2017 7 65213
神经网络前向传播反向传播公式 详细推导

神经网络的前向传播反向传播公式详细推导 本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。   对神经网络有些了解 ...

Tue Mar 24 08:06:00 CST 2020 0 1508
神经网络——反向传播BP算法公式推导

  在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练。在众多的训练算法中,其中最杰出的代表就是BP算法 ...

Mon Apr 22 06:34:00 CST 2019 0 826
反向传播算法推导

一、MSE 损失函数推导 前向传播过程: 梯度反向传播公式推导: 定义残差: 则 残差推导如下: 对于最后一层: 广义上,左边项(-(···))是定义的损失函数对其输入(即最后一层神经元值)的导数,右项是sigmoind求导,这两项都是 ...

Sat Feb 23 17:18:00 CST 2019 0 995
单层和双层神经网络反向传播公式推导(从矩阵求导的角度)

最近在跟着Andrew Ng老师学习深度神经网络.在学习浅层神经网络(两层)的时候,推导反向传播公式遇到了一些困惑,网上没有找到系统推导的过程.后来通过学习矩阵求导相关技巧,终于搞清楚了.首先从最简单的logistics回归(单层神经网络)开始. logistics regression中的梯度 ...

Sat May 18 19:43:00 CST 2019 1 1286
神经网络之反向传播算法(BP)公式推导(超详细)

反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数 ...

Sat Jan 11 01:27:00 CST 2020 3 11654
BP神经网络:误差反向传播算法公式推导图解

BP神经网络:误差反向传播算法公式推导 开端: BP算法提出 1. BP神经网络参数符号及激活函数说明 2. 网络输出误差(损失函数)定义 3. 隐藏层与输出层间的权重更新公式推导 ...

Sun May 30 08:57:00 CST 2021 0 183
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM