特征提取和分类是典型计算机视觉系统的两个关键阶段。视觉系统的准确性、稳健性和效率很大程度上取决于图像特征和分类器的质量。特征提取方法可以分为两个不同的类别,即基于手工的方法和基于特征学习的方法。分类器可以分为两组,即浅层模型和深层模型。 特征是任何独特的方面或特性,用于解决与特定应用相关 ...
前言 使用opencv自带的分类器效果并不是很好,由此想要训练自己的分类器,正好opencv有自带的工具进行训练。本文就对此进行展开。 步骤 .查找工具文件 .准备样本数据 .训练分类器 具体操作 注意,本文是在windows系统实现的,当然也可以在linux系统进行。 .查找工具文件 opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目录如下。 可以在该目录下查找到相关的 ...
2018-09-26 15:03 0 1155 推荐指数:
特征提取和分类是典型计算机视觉系统的两个关键阶段。视觉系统的准确性、稳健性和效率很大程度上取决于图像特征和分类器的质量。特征提取方法可以分为两个不同的类别,即基于手工的方法和基于特征学习的方法。分类器可以分为两组,即浅层模型和深层模型。 特征是任何独特的方面或特性,用于解决与特定应用相关 ...
前言 最近又开始进行人脸检测方向的内容,看到于仕琪老师的多角度检测想试一下,还不清楚原理,先测试效果如何。 libfacedetect人脸检测库是深圳大学于仕琪老师发布的开源库,与opencv自带的人脸检测器相比,在速度和精度上都有较大的优势。 本文主要基于libfacedetect库测试 ...
一、什么是计算机视觉 计算机视觉这种技术可以将静止的图像或视频数据转换为一种决策或新的表示。所有这样的转换都是为了完成某种特定的目的而进行的。输入数据可能包含一些场景信息,例如“相机是搭载在衣领车上的”或者“雷达发现了一米之外有一个目标”。表示形式是将色彩图像转换为黑白图像,或者从一个图像序列中 ...
运行环境 visual studio 2017(2019也可) opencv3.4(410也可) xml文件 从OpenCV目录里找 C:\OpenCV4.0\opencv\sources\data\haarcascades 这里也有其它目标检测的xml ...
计算机视觉四大基本任务 (分类、定位、检测、分割) 引言 深度学习目前已成为发展最快、最令人兴奋的机器学习领域之一,许多卓有建树的论文已经发表,而且已有很多高质量的开源深度学习框架可供使用。然而,论文通常非常简明扼要并假设读者已对深度学习有相当的理解,这使得初学者经常卡在一些概念的理解上,读 ...
转自:http://www.cnblogs.com/leivo/archive/2008/08/07/1263176.html 一、人脸表情识别技术目前主要的应用领域包括人机交互、安全、机器人制造、医疗、通信和汽车领域等 二、 1971 年,心理学家 ...
人脸应用在计算机视觉体系中占很大一块,在深度学习火起来之前,基于传统机器学习的人脸应用就已经很成熟了,有很多商用应用场景。本文用一个可以实际运行的Demo来说明人脸应用中常见的技术概念,包含‘人脸检测’、‘人脸对比’、‘人脸表征检测(五官定位)’、‘眨眼检测’、‘活体检测’以及‘疲劳检测 ...