一、简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择。在建树过程中,如果一些样本很快就到达了叶子节点(即叶子到根的距离d很短),那么就被认为很有可能是异常点 ...
.算法简介 算法的原始论文http: cs.nju.edu.cn zhouzh zhouzh.files publication icdm b.pdf。python的sklearn中已经实现了相关的api,对于单机的数据已经足够使用了,链接如下http: scikit learn.org stable modules generated sklearn.ensemble.IsolationFor ...
2018-09-24 19:42 0 1612 推荐指数:
一、简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择。在建树过程中,如果一些样本很快就到达了叶子节点(即叶子到根的距离d很短),那么就被认为很有可能是异常点 ...
南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结。 iTree 提到森林,自然少不了树,毕竟森林都是由树构成的,看Isolation Forest(简称 ...
代码如下,测试发现,是否对输入数据进行归一化/标准化对于结果没有影响: 输出样例: 输入数据样例(已经提取了特征): 参考:http://scik ...
简介 工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记噪声数据,而数据的质量决定了最终模型性能的好坏。如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题 ...
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法。可能大家都习惯用其英文的名字isolation forest,简称iForest 。 iForest适用于连续数据 ...
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法。可能大家都习惯用其英文的名字isolation forest,简称iForest 。 iForest适用于连续数据 ...
Isolation Forest(以下简称iForest)算法是由南京大学的周志华和澳大利亚莫纳什大学的Fei Tony Liu, Kai Ming Ting等人共同提出,用于挖掘异常数据【Isolation Forest,Isolation-based Anomaly Detection】。该算 ...
著名的,人手一本的西瓜书(就是这本)的作者周志华老师,于2008年在第八届IEEE数据挖掘国际会议上提出孤立森林(Isolation Forest) 算法, 先简单解释一下什么是孤立森林: 「假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成 ...