本文转自:mse、rmse、mae、r2指标的总结以及局限性 衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得 尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据 ...
TSS: Total Sum of Squares 总离差平方和 因变量的方差 RSS: Residual Sum of Squares 残差平方和 由误差导致的真实值和估计值之间的偏差平方和 Sum Of Squares Due To Error ESS: Explained Sum of Squares 回归平方和 被模型解释的方差 Sum Of Squares Due To Regressi ...
2019-03-29 16:31 0 6728 推荐指数:
本文转自:mse、rmse、mae、r2指标的总结以及局限性 衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得 尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据 ...
衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然,其衡量标准可以是 但问题是,这个衡量标准和m相关。 (当10000个样本误差累积 ...
在回归任务(对连续值的预测)中,常见的评估指标(Metric)有:平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、均方根误差(Root Mean Square Error,RMSE)和平均绝对百分比误差(Mean ...
一、MSE、RMSE、MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 RMSE:均方根误差 MAE ...
回归平方和 ESS,残差平方和 RSS,总体平方和 TSS 残差平方和越小,自变量与因变量之间的相关性越好 总变差(TSS):被解释变量Y的观测值与其平均值的离差平方和(总平方和)(说明 Y 的总变动程度) 解释了的变差(ESS):被解释变量Y ...
前言 分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。下面一一介绍 均方误差(MSE) MSE (Mean Squared Error)叫做均方误差。看公式 ...
简书 原作者 skullfang https://www.jianshu.com/p/9ee85fdad150 https://blog.csdn.net/zrh_CSDN/article/details/81190001 分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE ...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。 MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候;MAE是一个线性的指标,所有个体差异在平均值上均等加权 ...