最近关注了下大模型,整理一下,备忘。 1. ResNet,原始caffe版本,结构如下: InsightFace对Resnet的实现有点不同,首先是默认会把第一个7x7的卷积换成3x3,并去掉pool操作(人脸识别输入分辨率112x112比ImageNet小),另外当层数大于101 ...
前言 在论文笔记:CNN经典结构 中主要讲了 年的一些经典CNN结构。本文主要讲解 年的一些经典CNN结构。 CIFAR和SVHN上,DenseNet BC优于ResNeXt优于DenseNet优于WRN优于FractalNet优于ResNetv 优于ResNet,具体数据见CIFAR和SVHN在各CNN论文中的结果。ImageNet上,SENet优于DPN优于ResNeXt优于WRN优于ResN ...
2018-09-22 22:16 0 8453 推荐指数:
最近关注了下大模型,整理一下,备忘。 1. ResNet,原始caffe版本,结构如下: InsightFace对Resnet的实现有点不同,首先是默认会把第一个7x7的卷积换成3x3,并去掉pool操作(人脸识别输入分辨率112x112比ImageNet小),另外当层数大于101 ...
简介 图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。 resneXt:分组卷积,降低了网络参数个数。 densenet:密集的跳连接。 mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。 SENet:注意力机制 ...
《Densely Connected Convolutional Networks》阅读笔记 代码地址:https://github.com/liuzhuang13/DenseNet 首先看一张图: 稠密连接:每层以之前层的输出为输入,对于有L层的传统网络,一共有L个连接,对于DenseNet ...
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2。 在论文笔记:CNN经典结构2中我介绍了2016-2017年的几个经典CNN结构,WideResNet,FractalNet ...
总结近期CNN模型的发展(一) from:https://zhuanlan.zhihu.com/p/30746099 余俊 ...
之前在一次组会上,师弟诉苦说他用 UNet 处理一个病灶分割的任务,但效果极差,我看了他的数据后发现,那些病灶区域比起整张图而言非常的小,而 UNet 采用的损失函数通常是逐像素的分类损失,如此一来, ...
FractalNet: Ultra-Deep Neural Networks without Residuals ICLR 2017 Gustav Larsson, Michael Maire, Gregory Shakhnarovich 文章提出了什么(What) ResNet提升 ...
Densely Connected Convolutional Networks 原文链接 摘要 研究表明,如果卷积网络在接近输入和接近输出地层之间包含较短地连接,那么,该网络可以显著地加深,变得更精确并且能够更有效地训练。该论文基于这个观察提出了以前馈地方式将每个层与其它层连接地密集卷积 ...